Amy C. Degnim, Stacey J. Winham, Ryan D. Frank, Robert A. Vierkant, Marlene H. Frost, Tanya L. Hoskin, Celine M. Vachon, Karthik Ghosh, Tina J. Hieken, Jodi M. Carter, Lori A. Denison, Brendan Broderick, Lynn C. Hartmann, and Daniel W. Visscher, Mayo Clinic, Rochester, MN; V. Shane Pankratz, University of New Mexico Health Sciences Center, Albuquerque, NM; William D. Dupont, Vanderbilt University, Nashville, TN; and Derek C. Radisky, Mayo Clinic, Jacksonville, FL.
J Clin Oncol. 2018 Jun 20;36(18):1840-1846. doi: 10.1200/JCO.2017.75.9480. Epub 2018 Apr 20.
Purpose Women with atypical hyperplasia (AH) on breast biopsy have an aggregate increased risk of breast cancer (BC), but existing risk prediction models do not provide accurate individualized estimates of risk in this subset of high-risk women. Here, we used the Mayo benign breast disease cohort to develop and validate a model of BC risk prediction that is specifically for women with AH, which we have designated as AH-BC. Patients and Methods Retrospective cohorts of women age 18 to 85 years with pathologically confirmed benign AH from Rochester, MN, and Nashville, TN, were used for model development and external validation, respectively. Clinical risk factors and histologic features of the tissue biopsy were selected using L1-penalized Cox proportional hazards regression. Identified features were included in a Fine and Gray regression model to estimate BC risk, with death as a competing risk. Model discrimination and calibration were assessed in the model-building set and an external validation set. Results The model-building set consisted of 699 women with AH, 142 of whom developed BC (median follow-up, 8.1 years), and the external validation set consisted of 461 women with 114 later BC events (median follow-up, 11.4 years). The final AH-BC model included three covariates: age at biopsy, age at biopsy squared, and number of foci of AH. At 10 years, the AH-BC model demonstrated good discrimination (0.63 [95% CI, 0.57 to 0.70]) and calibration (0.87 [95% CI, 0.66 to 1.24]). In the external validation set, the model showed acceptable discrimination (0.59 [95% CI, 0.51 to 0.67]) and calibration (0.91 [95% CI, 0.65 to 1.42]). Conclusion We have created a new model with which to refine BC risk prediction for women with AH. The AH-BC model demonstrates good discrimination and calibration, and it validates in an external data set.
在接受乳房活检的非典型性增生(AH)女性中,乳腺癌(BC)的总体发病风险增加,但现有的风险预测模型并不能为这部分高危女性提供准确的个体化风险估计。在这里,我们使用梅奥良性乳腺疾病队列来开发和验证一种专门针对 AH 女性的 BC 风险预测模型,我们将其命名为 AH-BC。
回顾性队列研究分别来自明尼苏达州罗切斯特和田纳西州纳什维尔,对年龄在 18 至 85 岁之间的经病理证实的良性 AH 患者进行了模型构建和外部验证。使用 L1 惩罚 Cox 比例风险回归选择临床风险因素和组织活检的组织学特征。识别出的特征被纳入 Fine-Gray 回归模型,以估计 BC 风险,将死亡视为竞争风险。在模型构建集和外部验证集中评估模型的区分度和校准度。
模型构建集包含 699 例 AH 患者,其中 142 例发生 BC(中位随访 8.1 年),外部验证集包含 461 例患者,其中 114 例发生后期 BC 事件(中位随访 11.4 年)。最终的 AH-BC 模型包含三个协变量:活检时年龄、活检时年龄的平方和 AH 病灶数量。在 10 年时,AH-BC 模型显示出良好的区分度(0.63 [95%CI,0.57 至 0.70])和校准度(0.87 [95%CI,0.66 至 1.24])。在外部验证集中,该模型显示出可接受的区分度(0.59 [95%CI,0.51 至 0.67])和校准度(0.91 [95%CI,0.65 至 1.42])。
我们创建了一个新的模型,用于细化 AH 女性的 BC 风险预测。AH-BC 模型具有良好的区分度和校准度,并在外部数据集得到验证。