Suppr超能文献

原位合成硫化钼/还原氧化石墨烯多孔薄膜作为染料敏化太阳能电池的坚固对电极。

In-situ synthesis of molybdenum sulfide/reduced graphene oxide porous film as robust counter electrode for dye-sensitized solar cells.

机构信息

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China.

Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China; Henan Key Lab Boron Chemistry & Advanced Energy Mat, Xinxiang 453007, Henan, PR China.

出版信息

J Colloid Interface Sci. 2018 Aug 15;524:475-482. doi: 10.1016/j.jcis.2018.04.046. Epub 2018 Apr 11.

Abstract

Molybdenum sulfide/reduced graphene oxide (MoS/RGO) porous film was in-situ deposited on fluorine-doped tin oxide (FTO) substrates via a one-pot hydrothermal method. Due to the oxygen-containing groups distributing on graphene oxide (GO) surface, the MoS sheets could nucleate and grow taking GO as substrates and the MoS/RGO film can be strongly linked to the FTO. Based on the electrochemical investigations, the enhanced cell performance could be ascribed to the improved electrical conductivity, catalytic active sites and electrolyte diffusion rate, which finally contribute to the high catalytic performance on the reduction of I/I couples in the electrolyte. Therefore, the cell adopting as-prepared MoS/RGO as counter electrode demonstrated high power conversion efficiencies (PCE) of 7.63%, which indicates ∼14% enhancement compared with the MoS-based (6.68%) device.

摘要

通过一步水热法,将二硫化钼/还原氧化石墨烯(MoS/RGO)多孔薄膜原位沉积在掺氟氧化锡(FTO)基底上。由于氧化石墨烯(GO)表面分布着含氧基团,因此 MoS 片可以以 GO 为基底进行成核和生长,MoS/RGO 薄膜可以与 FTO 紧密结合。基于电化学研究,电池性能的提高可归因于电导率、催化活性位和电解质扩散率的提高,这最终有助于在电解质中对 I/I 对的还原表现出高催化性能。因此,采用所制备的 MoS/RGO 作为对电极的电池表现出 7.63%的高功率转换效率(PCE),与基于 MoS 的器件(6.68%)相比提高了约 14%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验