Suppr超能文献

一种增强术语绑定的实证方法——以HL7 FHIR SNOMED CT为例。

An Empirical Approach to Enhancing Terminology Binding - An HL7 FHIR SNOMED CT Example.

作者信息

Gøeg Kirstine Rosenbeck, Hummeluhr Mark

机构信息

Department of Health Science and Technology, Aalborg University, Denmark.

出版信息

Stud Health Technol Inform. 2018;247:206-210.

Abstract

Information exchange at the level of semantic interoperability requires that information models and clinical terminologies work well together. In HL7 FHIR resources, terminology binding to standard terminologies such as SNOMED CT are suggested, and even though most are suggestions rather than rules, they still must reflect the clinical domain accurately. In this study, we suggest a method for empirically evaluating whether a terminology binding represents the value sets used in practice. We evaluated the terminology binding associated with the MedicationRequest.reasonCode using the Danish national indication value set which we mapped to SNOMED CT. We found two problems with the terminology binding, namely, that the reason for prophylactic treatment and that medication given as part of a procedure, but not related to the patients' problems per se could not be expressed within the boundary of HL7 FHIR's example terminology binding. Future work will include showing how more complex terminology binding issues could be informed by looking at value sets in use.

摘要

语义互操作性层面的信息交换要求信息模型和临床术语能够协同良好工作。在HL7 FHIR资源中,建议将术语绑定到诸如SNOMED CT等标准术语,尽管大多数是建议而非规则,但它们仍必须准确反映临床领域。在本研究中,我们提出了一种实证评估术语绑定是否代表实际使用的价值集的方法。我们使用映射到SNOMED CT的丹麦国家适应症价值集评估了与用药申请.原因代码相关的术语绑定。我们发现该术语绑定存在两个问题,即预防性治疗的原因以及作为手术一部分但本身与患者问题无关的用药,无法在HL7 FHIR示例术语绑定的范围内表达。未来的工作将包括展示如何通过查看实际使用的价值集来了解更复杂的术语绑定问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验