Suppr超能文献

利用肿瘤学中的大数据前瞻性地影响临床患者护理:概念验证研究。

Using Big Data in oncology to prospectively impact clinical patient care: A proof of concept study.

机构信息

H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.

Lynn Cancer Institute, Boca Raton, FL, USA.

出版信息

J Geriatr Oncol. 2018 Nov;9(6):665-672. doi: 10.1016/j.jgo.2018.03.017. Epub 2018 Apr 17.

Abstract

OBJECTIVE

Big Data is widely seen as a major opportunity for progress in the practice of personalized medicine, attracting the attention from medical societies and presidential teams alike as it offers a unique opportunity to enlarge the base of evidence, especially for older patients underrepresented in clinical trials. This study prospectively assessed the real-time availability of clinical cases in the Health & Research Informatics Total Cancer Care™ (TCC) database matching community patients with cancer, and the impact of such a consultation on treatment.

MATERIALS AND METHODS

Patients aged 70 and older seen at the Lynn Cancer Institute (LCI) with a documented malignancy were eligible. Geriatric screening information and the oncologist's pre-consultation treatment plan were sent to Moffitt. A search for similar patients was done in TCC and additional information retrieved from Electronic Medical Records. A report summarizing the data was sent and the utility of such a consultation was assessed per email after the treatment decision.

RESULTS

Thirty one patients were included. The geriatric screening was positive in 87.1% (27) of them. The oncogeriatric consultation took on average 2.2 working days. It influenced treatment in 38.7% (12), and modified it in 19.4% (6). The consultation was perceived as "somewhat" to "very useful" in 83.9% (26).

CONCLUSION

This study establishes a proof of concept of the feasibility of real time use of Big Data for clinical practice. The geriatric screening and the consultation report influenced treatment in 38.7% of cases and modified it in 19.4%, which compares very well with oncogeriatric literature. Additional steps are needed to render it financially and clinically viable.

摘要

目的

大数据被广泛视为个性化医疗实践取得进展的重大机遇,引起了医学学会和总统团队的关注,因为它为扩大证据基础提供了独特的机会,特别是对于临床试验中代表性不足的老年患者。本研究前瞻性评估了 Health & Research Informatics Total Cancer Care™(TCC)数据库中与癌症患者匹配的临床病例的实时可用性,以及此类咨询对治疗的影响。

材料和方法

在 Lynn Cancer Institute(LCI)就诊且有记录的恶性肿瘤的年龄在 70 岁及以上的患者符合条件。将老年筛选信息和肿瘤学家的预咨询治疗计划发送给 Moffitt。在 TCC 中进行了类似患者的搜索,并从电子病历中检索了其他信息。发送了一份总结数据的报告,并在治疗决策后通过电子邮件评估此类咨询的效用。

结果

共纳入 31 例患者。其中 87.1%(27 例)的患者老年筛选阳性。肿瘤老年学咨询平均需要 2.2 个工作日。它影响了 38.7%(12 例)的治疗,并改变了 19.4%(6 例)的治疗。83.9%(26 例)的患者认为咨询“有些”到“非常有用”。

结论

本研究证明了实时使用大数据进行临床实践的可行性。老年筛选和咨询报告影响了 38.7%的病例的治疗,并改变了 19.4%的病例的治疗,这与肿瘤老年学文献非常吻合。需要采取额外的步骤使其在财务和临床方面可行。

相似文献

1
Using Big Data in oncology to prospectively impact clinical patient care: A proof of concept study.
J Geriatr Oncol. 2018 Nov;9(6):665-672. doi: 10.1016/j.jgo.2018.03.017. Epub 2018 Apr 17.
2
Does a geriatric oncology consultation modify the cancer treatment plan for elderly patients?
J Gerontol A Biol Sci Med Sci. 2008 Jul;63(7):724-30. doi: 10.1093/gerona/63.7.724.
3
The Effect of a Geriatric Oncology Clinic on Treatment Decisions in Mexican Older Adults With Cancer.
J Am Geriatr Soc. 2019 May;67(5):992-997. doi: 10.1111/jgs.15753. Epub 2019 Jan 14.
4
How to incorporate geriatric assessment in clinical decision-making for older patients with cancer. An implementation study.
J Geriatr Oncol. 2019 Nov;10(6):951-959. doi: 10.1016/j.jgo.2019.04.006. Epub 2019 Apr 26.
5
Using a geriatric oncology assessment to link with services (GOAL).
J Geriatr Oncol. 2019 Jan;10(1):164-168. doi: 10.1016/j.jgo.2018.06.004. Epub 2018 Jun 27.
6
Beyond the black box of geriatric assessment: Understanding enhancements to care by the geriatric oncology clinic.
J Geriatr Oncol. 2018 Nov;9(6):679-682. doi: 10.1016/j.jgo.2018.03.012. Epub 2018 Apr 6.
7
Geriatric evaluation methods in oncology and their use in clinical studies: A systematic literature review.
J Geriatr Oncol. 2024 Apr;15(3):101684. doi: 10.1016/j.jgo.2023.101684. Epub 2023 Dec 9.
8
Toward Modernization of Geriatric Oncology by Digital Health Technologies.
Am Soc Clin Oncol Educ Book. 2020 Mar;40:1-7. doi: 10.1200/EDBK_279505.
9
Impact and feasibility of a comprehensive geriatric assessment in the oncology setting: a pilot study.
Am J Clin Oncol. 2012 Aug;35(4):322-8. doi: 10.1097/COC.0b013e318210f9ce.
10
Utility of a chemotherapy toxicity prediction tool for older patients in a community setting.
Curr Oncol. 2019 Aug;26(4):234-239. doi: 10.3747/co.26.4869. Epub 2019 Aug 1.

引用本文的文献

1
Cohort Identification for Translational Bioinformatics Studies.
Methods Mol Biol. 2021;2194:35-44. doi: 10.1007/978-1-0716-0849-4_3.

本文引用的文献

2
International Society of Geriatric Oncology consensus on geriatric assessment in older patients with cancer.
J Clin Oncol. 2014 Aug 20;32(24):2595-603. doi: 10.1200/JCO.2013.54.8347.
3
5
Finding the missing link for big biomedical data.
JAMA. 2014 Jun 25;311(24):2479-80. doi: 10.1001/jama.2014.4228.
6
External validity of a trial comprised of elderly patients with hormone receptor-positive breast cancer.
J Natl Cancer Inst. 2014 Apr;106(4):dju051. doi: 10.1093/jnci/dju051. Epub 2014 Mar 19.
7
An update on a systematic review of the use of geriatric assessment for older adults in oncology.
Ann Oncol. 2014 Feb;25(2):307-15. doi: 10.1093/annonc/mdt386. Epub 2013 Nov 19.
8
Intended versus inferred care after PET performed for initial staging in the National Oncologic PET Registry.
J Nucl Med. 2013 Dec;54(12):2024-31. doi: 10.2967/jnumed.113.123430. Epub 2013 Nov 12.
9
The influence of clinical assessment (including age) and geriatric assessment on treatment decisions in older patients with cancer.
J Geriatr Oncol. 2013 Jul;4(3):235-41. doi: 10.1016/j.jgo.2013.04.010. Epub 2013 May 23.
10
The inevitable application of big data to health care.
JAMA. 2013 Apr 3;309(13):1351-2. doi: 10.1001/jama.2013.393.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验