Suppr超能文献

队列鉴定在转化生物信息学研究中的应用。

Cohort Identification for Translational Bioinformatics Studies.

机构信息

Collaborative Data Services Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

出版信息

Methods Mol Biol. 2021;2194:35-44. doi: 10.1007/978-1-0716-0849-4_3.

Abstract

Translational studies for therapeutic development require cohort identification to identify appropriate biological materials from patients that can be utilized to test a specific hypothesis. Robust health information systems exist, but there are numerous challenges in accessing the information to select appropriate biological specimens needed for translational experiments. This chapter on methods describes the current standard process for cohort identification utilized by the Cutaneous Oncology Program and the Collaborative Data Services Core (CDSC) at Moffitt Cancer Center. The methods include utilization of graphical user interfaces coupled with database querying. As such, this chapter outlines the regulatory and procedural processes needed to utilize a health information management system to filter patients for cohort identification.

摘要

治疗开发的转化研究需要队列识别,以从患者中识别出可用于测试特定假设的合适生物材料。现有的健康信息系统是健全的,但在获取信息以选择转化实验所需的合适生物标本方面存在诸多挑战。本章介绍了方法,描述了莫菲特癌症中心皮肤肿瘤计划和协作数据服务核心(CDSC)目前使用的队列识别标准流程。该方法包括使用图形用户界面与数据库查询相结合。因此,本章概述了利用健康信息管理系统筛选患者进行队列识别所需的监管和程序流程。

相似文献

1
Cohort Identification for Translational Bioinformatics Studies.
Methods Mol Biol. 2021;2194:35-44. doi: 10.1007/978-1-0716-0849-4_3.
3
Translational Bioinformatics and Clinical Research (Biomedical) Informatics.
Surg Pathol Clin. 2015 Jun;8(2):269-88. doi: 10.1016/j.path.2015.02.015. Epub 2015 Mar 31.
4
The BiolAD-DB system : an informatics system for clinical and genetic data.
Mol Diagn Ther. 2007;11(1):15-9. doi: 10.1007/BF03256219.
6
Bioinformatics and cancer research: building bridges for translational research.
Clin Transl Oncol. 2008 Feb;10(2):85-95. doi: 10.1007/s12094-008-0161-5.
8
Workflow based framework for life science informatics.
Comput Biol Chem. 2007 Oct;31(5-6):305-19. doi: 10.1016/j.compbiolchem.2007.08.009. Epub 2007 Aug 19.

本文引用的文献

1
Data Analysis Using R Programming.
Adv Exp Med Biol. 2018;1082:47-122. doi: 10.1007/978-3-319-93791-5_2.
2
Using Big Data in oncology to prospectively impact clinical patient care: A proof of concept study.
J Geriatr Oncol. 2018 Nov;9(6):665-672. doi: 10.1016/j.jgo.2018.03.017. Epub 2018 Apr 17.
4
Big data management challenges in health research-a literature review.
Brief Bioinform. 2019 Jan 18;20(1):156-167. doi: 10.1093/bib/bbx086.
7
Antecedents of open source software adoption in health care organizations: a qualitative survey of experts in Canada.
Int J Med Inform. 2013 Aug;82(8):731-41. doi: 10.1016/j.ijmedinf.2013.04.001. Epub 2013 Apr 24.
8
Implementing personalized medicine in a cancer center.
Cancer J. 2011 Nov-Dec;17(6):528-36. doi: 10.1097/PPO.0b013e318238216e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验