Suppr超能文献

用于创伤性脑损伤中冲击模拟和响应抽样的白质各向异性。

White Matter Anisotropy for Impact Simulation and Response Sampling in Traumatic Brain Injury.

机构信息

1 Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts.

2 Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts.

出版信息

J Neurotrauma. 2019 Jan 15;36(2):250-263. doi: 10.1089/neu.2018.5634. Epub 2018 Aug 10.

Abstract

Advanced neuroimaging provides new opportunities to enhance head injury models, including the incorporation of white matter (WM) structural anisotropy. Information from high-resolution neuroimaging, however, usually has to be "down-sampled" to match a typically coarse brain mesh. To understand how this mesh-image resolution mismatch affects impact simulation and subsequent response sampling, we compared three competing anisotropy implementations (using either voxels, tractography, or a multiscale submodeling) and two response sampling strategies (element-wise or tractography-based, using brain mesh or neuroimaging for region segmentation, respectively). Using the combination of high resolution options as a baseline, we studied how the choice in each individual category affected the resulting injury metrics. By simulating a recorded loss of consciousness head impact, we found that injury metrics including peak strain and injury susceptibility in the deep WM regions based on fiber strain, but not on maximum principal strain, were sensitive to the anisotropy implementation, response sampling, and region segmentation. Overall, it was recommended to use tractography for anisotropy implementation and response sampling, and to employ neuroimaging for region segmentation, because they led to more accurate injury metrics. Further refining mesh locally via submodeling was unnecessary. Brain strain responses were also parametrically found to be closer to that from minimum fiber reinforcement, consistent with the fact that the majority of WM had a rather high degree of fiber dispersion. Finally, the upgraded Worcester Head Injury Model incorporating WM anisotropy was successfully re-validated against cadaveric impacts and an in vivo head rotation ("good" to "excellent" validation with an average Correlation Analysis score of 0.437 and 0.509, respectively). These investigations may facilitate further continual development of head injury models to better study traumatic brain injury.

摘要

高级神经影像学为增强头部损伤模型提供了新的机会,包括白质(WM)结构各向异性的纳入。然而,来自高分辨率神经影像学的信息通常必须“下采样”以匹配典型的粗脑网格。为了了解这种网格-图像分辨率不匹配如何影响冲击模拟和随后的响应采样,我们比较了三种竞争的各向异性实现方法(分别使用体素、追踪或多尺度子建模)和两种响应采样策略(元素或基于追踪的,分别使用脑网格或神经影像学进行区域分割)。使用高分辨率选项的组合作为基线,我们研究了在每个单独类别中进行选择如何影响最终的损伤指标。通过模拟记录的昏迷头部撞击,我们发现基于纤维应变的深部 WM 区域的峰值应变和损伤易感性等损伤指标,但不是最大主应变,对各向异性实现、响应采样和区域分割敏感。总体而言,建议使用追踪进行各向异性实现和响应采样,并使用神经影像学进行区域分割,因为它们可以导致更准确的损伤指标。进一步通过子建模局部细化网格是不必要的。还发现脑应变响应在参数上更接近最小纤维增强的应变响应,这与 WM 中大多数纤维具有相当高的分散度的事实一致。最后,成功地将包含 WM 各向异性的升级后的 Worcester 头部损伤模型重新验证了尸体冲击和体内头部旋转(分别为平均相关分析得分为 0.437 和 0.509 的“良好”到“优秀”验证)。这些研究可能有助于进一步持续开发头部损伤模型,以更好地研究创伤性脑损伤。

相似文献

1
White Matter Anisotropy for Impact Simulation and Response Sampling in Traumatic Brain Injury.
J Neurotrauma. 2019 Jan 15;36(2):250-263. doi: 10.1089/neu.2018.5634. Epub 2018 Aug 10.
2
White Matter Injury Susceptibility via Fiber Strain Evaluation Using Whole-Brain Tractography.
J Neurotrauma. 2016 Oct 15;33(20):1834-1847. doi: 10.1089/neu.2015.4239. Epub 2016 Mar 30.
3
Changes in Apparent Fiber Density and Track-Weighted Imaging Metrics in White Matter following Experimental Traumatic Brain Injury.
J Neurotrauma. 2017 Jul 1;34(13):2109-2118. doi: 10.1089/neu.2016.4730. Epub 2017 Apr 13.
4
Displacement voxelization to resolve mesh-image mismatch: Application in deriving dense white matter fiber strains.
Comput Methods Programs Biomed. 2022 Jan;213:106528. doi: 10.1016/j.cmpb.2021.106528. Epub 2021 Nov 13.
5
Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion.
J Neurotrauma. 2015 Apr 1;32(7):441-54. doi: 10.1089/neu.2013.3268. Epub 2015 Feb 6.
6
Fiber orientation downsampling compromises the computation of white matter tract-related deformation.
J Mech Behav Biomed Mater. 2022 Aug;132:105294. doi: 10.1016/j.jmbbm.2022.105294. Epub 2022 May 25.
7
An anatomically detailed and personalizable head injury model: Significance of brain and white matter tract morphological variability on strain.
Biomech Model Mechanobiol. 2021 Apr;20(2):403-431. doi: 10.1007/s10237-020-01391-8. Epub 2020 Oct 10.
9

引用本文的文献

2
Surface-based versus voxel-based finite element head models: comparative analyses of strain responses.
Biomech Model Mechanobiol. 2025 Mar 11. doi: 10.1007/s10237-025-01940-z.
3
Post-mortem changes of anisotropic mechanical properties in the porcine brain assessed by MR elastography.
Brain Multiphys. 2024 Jun;6. doi: 10.1016/j.brain.2024.100091. Epub 2024 Feb 6.
4
The Impact of Drop Test Conditions on Brain Strain Location and Severity: A Novel Approach Using a Deep Learning Model.
Ann Biomed Eng. 2024 Aug;52(8):2234-2246. doi: 10.1007/s10439-024-03525-w. Epub 2024 May 13.
6
Use of Brain Biomechanical Models for Monitoring Impact Exposure in Contact Sports.
Ann Biomed Eng. 2022 Nov;50(11):1389-1408. doi: 10.1007/s10439-022-02999-w. Epub 2022 Jul 22.
7
American Football Helmet Effectiveness Against a Strain-Based Concussion Mechanism.
Ann Biomed Eng. 2022 Nov;50(11):1498-1509. doi: 10.1007/s10439-022-03005-z. Epub 2022 Jul 11.
8
Real-time dynamic simulation for highly accurate spatiotemporal brain deformation from impact.
Comput Methods Appl Mech Eng. 2022 May 1;394. doi: 10.1016/j.cma.2022.114913. Epub 2022 Apr 9.
9
Development and Validation of a New Anisotropic Visco-Hyperelastic Human Head Finite Element Model Capable of Predicting Multiple Brain Injuries.
Front Bioeng Biotechnol. 2022 Mar 24;10:831595. doi: 10.3389/fbioe.2022.831595. eCollection 2022.

本文引用的文献

1
Material properties of the brain in injury-relevant conditions - Experiments and computational modeling.
J Mech Behav Biomed Mater. 2018 Apr;80:222-234. doi: 10.1016/j.jmbbm.2018.02.005. Epub 2018 Feb 6.
2
Micromechanical analysis of brain's diffuse axonal injury.
J Biomech. 2017 Dec 8;65:61-74. doi: 10.1016/j.jbiomech.2017.09.029. Epub 2017 Oct 9.
3
Validation performance comparison for finite element models of the human brain.
Comput Methods Biomech Biomed Engin. 2017 Sep;20(12):1273-1288. doi: 10.1080/10255842.2017.1340462. Epub 2017 Jul 12.
4
Injury prediction and vulnerability assessment using strain and susceptibility measures of the deep white matter.
Biomech Model Mechanobiol. 2017 Oct;16(5):1709-1727. doi: 10.1007/s10237-017-0915-5. Epub 2017 May 12.
5
A computational study of invariant I in a nearly incompressible transversely isotropic model for white matter.
J Biomech. 2017 May 24;57:146-151. doi: 10.1016/j.jbiomech.2017.03.025. Epub 2017 Apr 9.
6
A Three-Dimensional Computational Human Head Model That Captures Live Human Brain Dynamics.
J Neurotrauma. 2017 Jul 1;34(13):2154-2166. doi: 10.1089/neu.2016.4744. Epub 2017 Apr 10.
7
Regional mechanical properties of human brain tissue for computational models of traumatic brain injury.
Acta Biomater. 2017 Jun;55:333-339. doi: 10.1016/j.actbio.2017.03.037. Epub 2017 Mar 27.
9
Subconcussive Head Impact Exposure and White Matter Tract Changes over a Single Season of Youth Football.
Radiology. 2016 Dec;281(3):919-926. doi: 10.1148/radiol.2016160564. Epub 2016 Oct 24.
10
Systems Biology, Neuroimaging, Neuropsychology, Neuroconnectivity and Traumatic Brain Injury.
Front Syst Neurosci. 2016 Aug 9;10:55. doi: 10.3389/fnsys.2016.00055. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验