Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Santa Fe, Argentina.
Departamento de Química Biológica, Facultad de Ciencias exactas y Naturales, Universidad de Buenos Aires (UBA), Argentina.
FEBS J. 2018 Jun;285(12):2205-2224. doi: 10.1111/febs.14483. Epub 2018 May 13.
Arabidopsis thaliana possesses two fumarase genes (FUM), AtFUM1 (At2g47510) encoding for the mitochondrial Krebs cycle-associated enzyme and AtFUM2 (At5g50950) for the cytosolic isoform required for fumarate massive accumulation. Here, the comprehensive biochemical studies of AtFUM1 and AtFUM2 shows that they are active enzymes with similar kinetic parameters but differential regulation. For both enzymes, fumarate hydratase (FH) activity is favored over the malate dehydratase (MD) activity; however, MD is the most regulated activity with several allosteric activators. Oxalacetate, glutamine, and/or asparagine are modulators causing the MD reaction to become preferred over the FH reaction. Activity profiles as a function of pH suggest a suboptimal FUM activity in Arabidopsis cells; moreover, the direction of the FUM reaction is sensitive to pH changes. Under mild oxidation conditions, AtFUMs form high mass molecular aggregates, which present both FUM activities decreased to a different extent. The biochemical properties of oxidized AtFUMs (oxAtFUMs) were completely reversed by NADPH-supplied Arabidopsis leaf extracts, suggesting that the AtFUMs redox regulation can be accomplished in vivo. Mass spectrometry analyses indicate the presence of an active site-associated intermolecular disulfide bridge in oxAtFUMs. Finally, a phylogenetic approach points out that other plant species may also possess cytosolic FUM2 enzymes mainly encoded by paralogous genes, indicating that the evolutionary history of this trait has been drawn through a process of parallel evolution. Overall, according to our results, a multilevel regulatory pattern of FUM activities emerges, supporting the role of this enzyme as a carbon flow monitoring point through the organic acid metabolism in plants.
拟南芥拥有两个延胡索酸酶基因(FUM),AtFUM1(At2g47510)编码与三羧酸循环相关的线粒体酶,AtFUM2(At5g50950)编码细胞质同工酶,后者是富马酸大量积累所必需的。在这里,对 AtFUM1 和 AtFUM2 的综合生化研究表明,它们是具有相似动力学参数但具有不同调节方式的活性酶。对于这两种酶,延胡索酸水合酶(FH)活性优先于苹果酸脱水酶(MD)活性;然而,MD 是最受调节的活性,具有几种变构激活剂。草酰乙酸、谷氨酰胺和/或天冬酰胺是调节剂,使 MD 反应成为首选反应而不是 FH 反应。作为 pH 函数的活性谱表明,拟南芥细胞中的 FUM 活性不理想;此外,FUM 反应的方向对 pH 值的变化敏感。在温和的氧化条件下,AtFUMs 形成高分子量的分子聚集体,这两种酶的 FH 活性均降低到不同程度。氧化 AtFUMs(oxAtFUMs)的生化特性被 NADPH 供应的拟南芥叶片提取物完全逆转,表明 AtFUMs 的氧化还原调节可以在体内完成。质谱分析表明 oxAtFUMs 中存在活性位点相关的分子间二硫键。最后,系统发育分析表明,其他植物物种也可能拥有主要由同源基因编码的细胞质 FUM2 酶,表明该特征的进化历史是通过平行进化过程绘制的。总的来说,根据我们的结果,出现了 FUM 活性的多层次调节模式,支持该酶作为植物有机酸代谢中碳流监测点的作用。