Department of Electrical Engineering, The University of Suwon, San 2-2 Wau-ri, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 445-743, South Korea.
Department of Electrical Engineering, The University of Suwon, San 2-2 Wau-ri, Bongdam-eup, Hwaseong-si, Gyeonggi-do, 445-743, South Korea.
Neural Netw. 2018 Aug;104:1-14. doi: 10.1016/j.neunet.2018.03.018. Epub 2018 Apr 9.
In this study, we introduce a novel category of double fuzzy clustering-driven context neural networks (DFCCNNs). The study is focused on the development of advanced design methodologies for redesigning the structure of conventional fuzzy clustering-based neural networks. The conventional fuzzy clustering-based neural networks typically focus on dividing the input space into several local spaces (implied by clusters). In contrast, the proposed DFCCNNs take into account two distinct local spaces called context and cluster spaces, respectively. Cluster space refers to the local space positioned in the input space whereas context space concerns a local space formed in the output space. Through partitioning the output space into several local spaces, each context space is used as the desired (target) local output to construct local models. To complete this, the proposed network includes a new context layer for reasoning about context space in the output space. In this sense, Fuzzy C-Means (FCM) clustering is useful to form local spaces in both input and output spaces. The first one is used in order to form clusters and train weights positioned between the input and hidden layer, whereas the other one is applied to the output space to form context spaces. The key features of the proposed DFCCNNs can be enumerated as follows: (i) the parameters between the input layer and hidden layer are built through FCM clustering. The connections (weights) are specified as constant terms being in fact the centers of the clusters. The membership functions (represented through the partition matrix) produced by the FCM are used as activation functions located at the hidden layer of the "conventional" neural networks. (ii) Following the hidden layer, a context layer is formed to approximate the context space of the output variable and each node in context layer means individual local model. The outputs of the context layer are specified as a combination of both weights formed as linear function and the outputs of the hidden layer. The weights are updated using the least square estimation (LSE)-based method. (iii) At the output layer, the outputs of context layer are decoded to produce the corresponding numeric output. At this time, the weighted average is used and the weights are also adjusted with the use of the LSE scheme. From the viewpoint of performance improvement, the proposed design methodologies are discussed and experimented with the aid of benchmark machine learning datasets. Through the experiments, it is shown that the generalization abilities of the proposed DFCCNNs are better than those of the conventional FCNNs reported in the literature.
在这项研究中,我们引入了一种新的双模糊聚类驱动上下文神经网络(DFCCNN)类别。本研究专注于开发先进的设计方法,以重新设计基于传统模糊聚类的神经网络的结构。传统的基于模糊聚类的神经网络通常侧重于将输入空间划分为几个局部空间(由聚类表示)。相比之下,所提出的 DFCCNN 考虑了两个不同的局部空间,分别称为上下文空间和聚类空间。聚类空间是指位于输入空间中的局部空间,而上下文空间是指在输出空间中形成的局部空间。通过将输出空间划分为几个局部空间,每个上下文空间都用作构建局部模型的所需(目标)局部输出。为了完成此操作,所提出的网络包括一个新的上下文层,用于在输出空间中推理上下文空间。在这种意义上,模糊 C 均值(FCM)聚类可用于在输入和输出空间中形成局部空间。第一个用于在输入和隐藏层之间形成聚类并训练位于两者之间的权重,而另一个用于输出空间以形成上下文空间。所提出的 DFCCNN 的主要特点可以列举如下:(i)输入层和隐藏层之间的参数通过 FCM 聚类构建。连接(权重)指定为常数项,实际上是聚类的中心。FCM 生成的隶属度函数(通过分区矩阵表示)用作“常规”神经网络隐藏层中的激活函数。(ii)在隐藏层之后,形成上下文层以逼近输出变量的上下文空间,上下文层中的每个节点都表示单个局部模型。上下文层的输出指定为线性函数形成的权重与隐藏层输出的组合。使用基于最小二乘估计(LSE)的方法更新权重。(iii)在输出层,对上下文层的输出进行解码以产生相应的数值输出。此时,使用加权平均值,并且还使用 LSE 方案调整权重。从提高性能的角度来看,讨论了所提出的设计方法,并借助基准机器学习数据集进行了实验。通过实验表明,与文献中报道的传统 FCNN 相比,所提出的 DFCCNN 的泛化能力更好。