Lin C J
Department of Electronic Engineering, Nan-Kai Junior College of Technology & Commerce, Tsaotun, Taiwan, R.O.C.
Int J Neural Syst. 1996 Nov;7(5):569-90. doi: 10.1142/s0129065796000567.
This paper addresses a general connectionist model, called Fuzzy Adaptive Learning Control Network (FALCON), for the realization of a fuzzy logic control system. An on-line supervised structure/parameter learning algorithm is proposed for constructing the FALCON dynamically. It combines the backpropagation learning scheme for parameter learning and the fuzzy ART algorithm for structure learning. The supervised learning algorithm has some important features. First of all, it partitions the input state space and output control space using irregular fuzzy hyperboxes according to the distribution of training data. In many existing fuzzy or neural fuzzy control systems, the input and output spaces are always partitioned into "grids". As the number of input/output variables increase, the number of partitioned grids will grow combinatorially. To avoid the problem of combinatorial growing of partitioned grids in some complex systems, the proposed learning algorithm partitions the input/output spaces in a flexible way based on the distribution of training data. Second, the proposed learning algorithm can create and train the FALCON in a highly autonomous way. In its initial form, there is no membership function, fuzzy partition, and fuzzy logic rule. They are created and begin to grow as the first training pattern arrives. The users thus need not give it any a priori knowledge or even any initial information on these. In some real-time applications, exact training data may be expensive or even impossible to obtain. To solve this problem, a Reinforcement Fuzzy Adaptive Learning Control Network (RFALCON) is further proposed. The proposed RFALCON is constructed by integrating two FALCONs, one FALCON as a critic network, and the other as an action network. By combining temporal difference techniques, stochastic exploration, and a proposed on-line supervised structure/parameter learning algorithm, a reinforcement structure/parameter learning algorithm is proposed, which can construct a RFALCON dynamically through a reward/penalty signal. The ball and beam balancing system is presented to illustrate the performance and applicability of the proposed models and learning algorithms.
本文提出了一种通用的连接主义模型,称为模糊自适应学习控制网络(FALCON),用于实现模糊逻辑控制系统。提出了一种在线监督结构/参数学习算法,用于动态构建FALCON。它结合了用于参数学习的反向传播学习方案和用于结构学习的模糊ART算法。该监督学习算法具有一些重要特性。首先,它根据训练数据的分布,使用不规则模糊超盒对输入状态空间和输出控制空间进行划分。在许多现有的模糊或神经模糊控制系统中,输入和输出空间总是被划分为“网格”。随着输入/输出变量数量的增加,划分的网格数量将以组合方式增长。为了避免在一些复杂系统中划分网格组合增长的问题,所提出的学习算法基于训练数据的分布以灵活的方式对输入/输出空间进行划分。其次,所提出的学习算法能够以高度自主的方式创建和训练FALCON。在其初始形式中,没有隶属函数、模糊划分和模糊逻辑规则。它们在第一个训练模式到达时创建并开始增长。因此,用户无需提供任何先验知识,甚至无需提供关于这些的任何初始信息。在一些实时应用中,精确的训练数据可能成本高昂甚至无法获得。为了解决这个问题,进一步提出了强化模糊自适应学习控制网络(RFALCON)。所提出的RFALCON通过集成两个FALCON构建,一个FALCON作为评判网络,另一个作为动作网络。通过结合时间差分技术、随机探索和所提出的在线监督结构/参数学习算法,提出了一种强化结构/参数学习算法,该算法可以通过奖励/惩罚信号动态构建RFALCON。通过球杆平衡系统来说明所提出模型和学习算法的性能及适用性。