Suppr超能文献

基于传感器图案噪声和深度学习区分计算机生成图形与自然图像

Distinguishing Computer-Generated Graphics from Natural Images Based on Sensor Pattern Noise and Deep Learning.

作者信息

Yao Ye, Hu Weitong, Zhang Wei, Wu Ting, Shi Yun-Qing

机构信息

School of CyberSpace, Hangzhou Dianzi University, Hangzhou 310018, China.

Shenzhen Key Laboratory of Media Security, Shenzhen University, Shenzhen 518060, China.

出版信息

Sensors (Basel). 2018 Apr 23;18(4):1296. doi: 10.3390/s18041296.

Abstract

Computer-generated graphics (CGs) are images generated by computer software. The rapid development of computer graphics technologies has made it easier to generate photorealistic computer graphics, and these graphics are quite difficult to distinguish from natural images (NIs) with the naked eye. In this paper, we propose a method based on sensor pattern noise (SPN) and deep learning to distinguish CGs from NIs. Before being fed into our convolutional neural network (CNN)-based model, these images—CGs and NIs—are clipped into image patches. Furthermore, three high-pass filters (HPFs) are used to remove low-frequency signals, which represent the image content. These filters are also used to reveal the residual signal as well as SPN introduced by the digital camera device. Different from the traditional methods of distinguishing CGs from NIs, the proposed method utilizes a five-layer CNN to classify the input image patches. Based on the classification results of the image patches, we deploy a majority vote scheme to obtain the classification results for the full-size images. The experiments have demonstrated that (1) the proposed method with three HPFs can achieve better results than that with only one HPF or no HPF and that (2) the proposed method with three HPFs achieves 100% accuracy, although the NIs undergo a JPEG compression with a quality factor of 75.

摘要

计算机生成的图形(CGs)是由计算机软件生成的图像。计算机图形技术的快速发展使得生成逼真的计算机图形变得更加容易,并且这些图形用肉眼很难与自然图像(NIs)区分开来。在本文中,我们提出了一种基于传感器图案噪声(SPN)和深度学习的方法来区分CGs和NIs。在将这些图像(CGs和NIs)输入到我们基于卷积神经网络(CNN)的模型之前,先将它们裁剪成图像块。此外,使用三个高通滤波器(HPFs)去除代表图像内容的低频信号。这些滤波器还用于揭示由数码相机设备引入的残余信号以及SPN。与传统的区分CGs和NIs的方法不同,所提出的方法利用一个五层CNN对输入的图像块进行分类。基于图像块的分类结果,我们采用多数投票方案来获得全尺寸图像的分类结果。实验表明:(1)所提出的使用三个HPFs的方法比仅使用一个HPF或不使用HPF的方法能取得更好的结果;(2)所提出的使用三个HPFs的方法实现了100%的准确率,尽管NIs经过了质量因子为75的JPEG压缩。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccd7/5948567/b2926bd1feba/sensors-18-01296-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验