Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, 277-8581, Japan.
Department of Physics, Faculty of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 133-0022, Japan.
Nat Commun. 2018 Apr 24;9(1):1635. doi: 10.1038/s41467-018-03883-9.
A pure quantum state can fully describe thermal equilibrium as long as one focuses on local observables. The thermodynamic entropy can also be recovered as the entanglement entropy of small subsystems. When the size of the subsystem increases, however, quantum correlations break the correspondence and mandate a correction to this simple volume law. The elucidation of the size dependence of the entanglement entropy is thus essentially important in linking quantum physics with thermodynamics. Here we derive an analytic formula of the entanglement entropy for a class of pure states called cTPQ states representing equilibrium. We numerically find that our formula applies universally to any sufficiently scrambled pure state representing thermal equilibrium, i.e., energy eigenstates of non-integrable models and states after quantum quenches. Our formula is exploited as diagnostics for chaotic systems; it can distinguish integrable models from non-integrable models and many-body localization phases from chaotic phases.
只要关注局部可观测量,纯量子态就可以完全描述热平衡。热力学熵也可以作为小子系统的纠缠熵来恢复。然而,随着子系统尺寸的增加,量子相关打破了这种对应关系,要求对这个简单的体积定律进行修正。因此,阐明纠缠熵的尺寸依赖性对于将量子物理与热力学联系起来至关重要。在这里,我们为一类被称为 cTPQ 态的平衡态纯态推导出了纠缠熵的解析公式。我们通过数值计算发现,我们的公式普遍适用于任何表示热平衡的充分混乱的纯态,即非可积模型的能量本征态和量子淬火后的态。我们的公式可用于混沌系统的诊断;它可以区分可积模型和不可积模型,以及多体局域相和混沌相。