Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA.
Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 143026, Russia.
Phys Rev E. 2018 Jan;97(1-1):012140. doi: 10.1103/PhysRevE.97.012140.
Motivated by the qualitative picture of canonical typicality, we propose a refined formulation of the eigenstate thermalization hypothesis (ETH) for chaotic quantum systems. This formulation, which we refer to as subsystem ETH, is in terms of the reduced density matrix of subsystems. This strong form of ETH outlines the set of observables defined within the subsystem for which it guarantees eigenstate thermalization. We discuss the limits when the size of the subsystem is small or comparable to its complement. In the latter case we outline the way to calculate the leading volume-proportional contribution to the von Neumann and Renyi entanglment entropies. Finally, we provide numerical evidence for the proposal in the case of a one-dimensional Ising spin chain.
受正则典型性的定性描述启发,我们为混沌量子系统提出了精细表述的本征态热化假设(ETH)。这个表述,我们称之为子系统 ETH,是基于子系统的约化密度矩阵。这个强形式的 ETH 概述了一组在子系统内定义的可观测量,它保证了本征态热化。我们讨论了当子系统的大小较小时或与它的补集相当时的限制。在后一种情况下,我们概述了计算冯·诺依曼和 Renyi 纠缠熵的主要体积比例贡献的方法。最后,我们在一维伊辛自旋链的情况下为该建议提供了数值证据。