Suppr超能文献

用于太阳能光解水的非晶碳化硅薄膜光阴极背面场的改善

Improving the Back Surface Field on an Amorphous Silicon Carbide Thin-Film Photocathode for Solar Water Splitting.

作者信息

Perez-Rodriguez Paula, Cardenas-Morcoso Drialys, Digdaya Ibadillah A, Raventos Andrea Mangel, Procel Paul, Isabella Olindo, Gimenez Sixto, Zeman Miro, Smith Wilson A, Smets Arno H M

机构信息

Photovoltaic Materials and Devices (PVMD) group, Delft University of Technology, Delft, The Netherlands.

Institute of Advanced Materials (INAM), Universitat Jaume I, 12006, Castelló de la Plana, Spain.

出版信息

ChemSusChem. 2018 Jun 11;11(11):1797-1804. doi: 10.1002/cssc.201800782. Epub 2018 May 9.

Abstract

Amorphous silicon carbide (a-SiC:H) is a promising material for photoelectrochemical water splitting owing to its relatively small band-gap energy and high chemical and optoelectrical stability. This work studies the interplay between charge-carrier separation and collection, and their injection into the electrolyte, when modifying the semiconductor/electrolyte interface. By introducing an n-doped nanocrystaline silicon oxide layer into a p-doped/intrinsic a-SiC:H photocathode, the photovoltage and photocurrent of the device can be significantly improved, reaching values higher than 0.8 V. This results from enhancing the internal electric field of the photocathode, reducing the Shockley-Read-Hall recombination at the crucial interfaces because of better charge-carrier separation. In addition, the charge-carrier injection into the electrolyte is enhanced by introducing a TiO protective layer owing to better band alignment at the interface. Finally, the photocurrent was further enhanced by tuning the absorber layer thickness, arriving at a thickness of 150 nm, after which the current saturates to 10 mA cm at 0 V vs. the reversible hydrogen electrode in a 0.2 m aqueous potassium hydrogen phthalate (KPH) electrolyte at pH 4.

摘要

非晶碳化硅(a-SiC:H)因其相对较小的带隙能量以及高化学和光电稳定性,是一种用于光电化学水分解的很有前景的材料。这项工作研究了在修饰半导体/电解质界面时,电荷载流子的分离与收集及其注入电解质之间的相互作用。通过在p型掺杂/本征a-SiC:H光阴极中引入n型掺杂的纳米晶硅氧化物层,器件的光电压和光电流可得到显著提高,达到高于0.8 V的值。这是由于增强了光阴极的内部电场,由于更好的电荷载流子分离,减少了关键界面处的肖克利-里德-霍尔复合。此外,由于界面处更好的能带对准,通过引入TiO保护层增强了电荷载流子向电解质中的注入。最后,通过调整吸收层厚度进一步提高了光电流,在pH值为4的0.2 m邻苯二甲酸氢钾(KPH)水溶液电解质中,相对于可逆氢电极在0 V时,吸收层厚度达到150 nm后,电流饱和至10 mA cm 。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验