Suppr超能文献

结合ODR和血管追踪技术用于彩色眼底图像中的动静脉分类与分析

Combining ODR and Blood Vessel Tracking for Artery-Vein Classification and Analysis in Color Fundus Images.

作者信息

Alam Minhaj, Son Taeyoon, Toslak Devrim, Lim Jennifer I, Yao Xincheng

机构信息

Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.

Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA.

出版信息

Transl Vis Sci Technol. 2018 Apr 18;7(2):23. doi: 10.1167/tvst.7.2.23. eCollection 2018 Apr.

Abstract

PURPOSE

This study aims to develop a fully automated algorithm for artery-vein (A-V) and arteriole-venule classification and to quantify the effect of hypertension on A-V caliber and tortuosity ratios of nonproliferative diabetic retinopathy (NPDR) patients.

METHODS

We combine an optical density ratio (ODR) analysis and blood vessel tracking (BVT) algorithm to classify arteries and veins and arterioles and venules. An enhanced blood vessel map and ODR analysis are used to determine the blood vessel source nodes. The whole vessel map is then tracked beginning from the source nodes and classified as vein (venule) or artery (arteriole) using vessel curvature and angle information. Fifty color fundus images from NPDR patients are used to test the algorithm. Sensitivity, specificity, and accuracy metrics are measured to validate the classification method compared to ground truths.

RESULTS

The combined ODR-BVT method demonstrates 97.06% accuracy in identifying blood vessels as vein or artery. Sensitivity and specificity of A-V identification are 97.58%, 97.81%, and 95.89%, 96.68%, respectively. Comparative analysis revealed that the average A-V caliber and tortuosity ratios of NPDR patients with hypertension have 48% and 15.5% decreases, respectively, compared to that of NPDR patients without hypertension.

CONCLUSIONS

Automated A-V classification has been achieved by combined ODR-BVT analysis. Quantitative analysis of color fundus images verified robust performance of the A-V classification. Comparative quantification of A-V caliber and tortuosity ratios provided objective biomarkers to differentiate NPDR groups with and without hypertension.

TRANSLATIONAL RELEVANCE

Automated A-V classification can facilitate quantitative analysis of retinal vascular distortions due to diabetic retinopathy and other eye conditions and provide increased sensitivity for early detection of eye diseases.

摘要

目的

本研究旨在开发一种用于动静脉(A-V)和小动脉-小静脉分类的全自动算法,并量化高血压对非增殖性糖尿病视网膜病变(NPDR)患者A-V管径和迂曲度比值的影响。

方法

我们结合光密度比(ODR)分析和血管追踪(BVT)算法对动脉与静脉以及小动脉与小静脉进行分类。利用增强的血管图和ODR分析来确定血管源节点。然后从源节点开始追踪整个血管图,并使用血管曲率和角度信息将其分类为静脉(小静脉)或动脉(小动脉)。使用50张NPDR患者的彩色眼底图像来测试该算法。与地面真值相比,测量灵敏度、特异性和准确性指标以验证分类方法。

结果

联合ODR-BVT方法在将血管识别为静脉或动脉方面的准确率为97.06%。A-V识别的灵敏度和特异性分别为97.58%、97.81%以及95.89%、96.68%。对比分析显示,与无高血压的NPDR患者相比,患有高血压的NPDR患者的平均A-V管径和迂曲度比值分别降低了48%和15.5%。

结论

通过联合ODR-BVT分析实现了自动A-V分类。彩色眼底图像的定量分析验证了A-V分类的稳健性能。A-V管径和迂曲度比值的对比定量提供了客观的生物标志物,以区分有高血压和无高血压的NPDR组。

转化相关性

自动A-V分类有助于对糖尿病视网膜病变和其他眼部疾病引起的视网膜血管畸变进行定量分析,并提高对眼部疾病早期检测的灵敏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f2c/5912799/da6138663fa1/i2164-2591-7-2-23-f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验