Suppr超能文献

视网膜成像与图像分析。

Retinal imaging and image analysis.

机构信息

Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA.

出版信息

IEEE Rev Biomed Eng. 2010;3:169-208. doi: 10.1109/RBME.2010.2084567.

Abstract

Many important eye diseases as well as systemic diseases manifest themselves in the retina. While a number of other anatomical structures contribute to the process of vision, this review focuses on retinal imaging and image analysis. Following a brief overview of the most prevalent causes of blindness in the industrialized world that includes age-related macular degeneration, diabetic retinopathy, and glaucoma, the review is devoted to retinal imaging and image analysis methods and their clinical implications. Methods for 2-D fundus imaging and techniques for 3-D optical coherence tomography (OCT) imaging are reviewed. Special attention is given to quantitative techniques for analysis of fundus photographs with a focus on clinically relevant assessment of retinal vasculature, identification of retinal lesions, assessment of optic nerve head (ONH) shape, building retinal atlases, and to automated methods for population screening for retinal diseases. A separate section is devoted to 3-D analysis of OCT images, describing methods for segmentation and analysis of retinal layers, retinal vasculature, and 2-D/3-D detection of symptomatic exudate-associated derangements, as well as to OCT-based analysis of ONH morphology and shape. Throughout the paper, aspects of image acquisition, image analysis, and clinical relevance are treated together considering their mutually interlinked relationships.

摘要

许多重要的眼部疾病以及系统性疾病都会在视网膜上表现出来。虽然其他一些解剖结构也对视觉过程有贡献,但本篇综述专注于视网膜成像和图像分析。在简要概述了包括年龄相关性黄斑变性、糖尿病性视网膜病变和青光眼在内的工业化世界中最常见的致盲原因之后,本文介绍了视网膜成像和图像分析方法及其临床意义。本文回顾了二维眼底成像方法和三维光学相干断层扫描(OCT)成像技术。特别关注眼底照片分析的定量技术,重点是对视网膜血管、视网膜病变、视盘(ONH)形状的临床相关评估、视网膜图谱构建,以及针对视网膜疾病的人群自动筛查的方法。另有一节专门介绍 OCT 图像的三维分析,描述了视网膜层、视网膜血管的分割和分析方法,以及二维/三维检测与症状性渗出相关的紊乱,以及基于 OCT 的 ONH 形态和形状分析。在整篇文章中,综合考虑它们相互关联的关系,一起处理图像采集、图像分析和临床相关性的各个方面。

相似文献

1
Retinal imaging and image analysis.
IEEE Rev Biomed Eng. 2010;3:169-208. doi: 10.1109/RBME.2010.2084567.
4
Application of different imaging modalities for diagnosis of Diabetic Macular Edema: A review.
Comput Biol Med. 2015 Nov 1;66:295-315. doi: 10.1016/j.compbiomed.2015.09.012. Epub 2015 Sep 25.
5
Fully automated detection of retinal disorders by image-based deep learning.
Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):495-505. doi: 10.1007/s00417-018-04224-8. Epub 2019 Jan 4.
6
Measurement of the Inner Macular Layers for Monitoring of Glaucoma: Confounding Effects of Age-Related Macular Degeneration.
Ophthalmol Glaucoma. 2023 Jan-Feb;6(1):68-77. doi: 10.1016/j.ogla.2022.06.006. Epub 2022 Jun 21.
7
Glaucoma diagnostics.
Acta Ophthalmol. 2013 Feb;91 Thesis 1:1-32. doi: 10.1111/aos.12072.
8
Quantitative analysis of retinal OCT.
Med Image Anal. 2016 Oct;33:165-169. doi: 10.1016/j.media.2016.06.001. Epub 2016 Jul 12.
9
Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy.
Cochrane Database Syst Rev. 2015 Jan 7;1(1):CD008081. doi: 10.1002/14651858.CD008081.pub3.
10
Optic nerve head segmentation using fundus images and optical coherence tomography images for glaucoma detection.
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2015 Dec;159(4):607-15. doi: 10.5507/bp.2015.053. Epub 2015 Oct 23.

引用本文的文献

1
MAFNet: A novel adaptive multi-scale model for fine-grained grading of diabetic retinopathy.
Sci Rep. 2025 Sep 2;15(1):32280. doi: 10.1038/s41598-025-17158-z.
2
Myopic-Net: Deep Learning-Based Direct Identification of Myopia Onset and Progression.
Transl Vis Sci Technol. 2025 Aug 1;14(8):38. doi: 10.1167/tvst.14.8.38.
3
Research progress in deep learning-based fundus image analysis for the diagnosis and prediction of hypertension-related diseases.
Front Cell Dev Biol. 2025 Aug 6;13:1608994. doi: 10.3389/fcell.2025.1608994. eCollection 2025.
4
Specialized curricula for training vision language models in retinal image analysis.
NPJ Digit Med. 2025 Aug 19;8(1):532. doi: 10.1038/s41746-025-01893-8.
5
Dual U-Net with multi-task attention for automated eyelid curvature quantification.
Front Med (Lausanne). 2025 Jul 17;12:1631468. doi: 10.3389/fmed.2025.1631468. eCollection 2025.
6
A Novel Foundation Model-Based Framework for Multimodal Retinal Age Prediction.
IEEE J Transl Eng Health Med. 2025 Jun 4;13:299-309. doi: 10.1109/JTEHM.2025.3576596. eCollection 2025.
7
Confident Learning-Based Label Correction for Retinal Image Segmentation.
Diagnostics (Basel). 2025 Jul 8;15(14):1735. doi: 10.3390/diagnostics15141735.
9
Deep Learning and The Retina: A New Frontier in Multiple Sclerosis Diagnosis.
Curr Health Sci J. 2025 Jan-Mar;51(1):26-36. doi: 10.12865/CHSJ.51.01.03. Epub 2025 Mar 31.

本文引用的文献

1
Disparity analysis of images.
IEEE Trans Pattern Anal Mach Intell. 1980 Apr;2(4):333-40. doi: 10.1109/tpami.1980.4767032.
2
Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):33-40. doi: 10.1007/978-3-642-15711-0_5.
3
Retinal fractals and acute lacunar stroke.
Ann Neurol. 2010 Jul;68(1):107-11. doi: 10.1002/ana.22011.
4
Automated segmentation of neural canal opening and optic cup in 3D spectral optical coherence tomography volumes of the optic nerve head.
Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5708-17. doi: 10.1167/iovs.09-4838. Epub 2010 Jun 16.
5
Spectral reflectance of the human ocular fundus.
Appl Opt. 1989 Mar 15;28(6):1061-77. doi: 10.1364/AO.28.001061.
6
Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model.
Med Image Anal. 2010 Aug;14(4):539-49. doi: 10.1016/j.media.2010.04.001. Epub 2010 Apr 28.
7
Intra-retinal layer segmentation in optical coherence tomography using an active contour approach.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):649-56. doi: 10.1007/978-3-642-04271-3_79.
8
Correcting motion artifacts in retinal spectral domain optical coherence tomography via image registration.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):100-7. doi: 10.1007/978-3-642-04268-3_13.
9
Automated early detection of diabetic retinopathy.
Ophthalmology. 2010 Jun;117(6):1147-54. doi: 10.1016/j.ophtha.2010.03.046.
10
Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula.
IEEE Trans Med Imaging. 2010 Jun;29(6):1321-30. doi: 10.1109/TMI.2010.2047023. Epub 2010 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验