Suppr超能文献

通过生物矿化法制备 LiMnFePO/Carbon Nanospheres@Graphene Nanoribbons 作为锂离子电池的正极。

LiMnFePO/Carbon Nanospheres@Graphene Nanoribbons Prepared by the Biomineralization Process as the Cathode for Lithium-Ion Batteries.

机构信息

Institute of New Energy Material Chemistry, School of Materials Science and Engineering , Nankai University , Tianjin 300350 , China.

Key Laboratory of Functional Polymer Materials of the Ministry of Education, College of Chemistry , Nankai University , Tianjin 300071 , China.

出版信息

ACS Appl Mater Interfaces. 2018 May 16;10(19):16500-16510. doi: 10.1021/acsami.8b02736. Epub 2018 May 7.

Abstract

Biomineralization technology is a feasible and promising route to fabricate phosphate cathode materials with hierarchical nanostructure for high-performance lithium-ion batteries (LIBs). In this work, to improve the electrochemical performance of LiMnFePO (LMFP), hierarchical LMFP/carbon nanospheres are wrapped in situ with N-doped graphene nanoribbons (GNRs) via biomineralization by using yeast cells as the nucleating agent, self-assembly template, and carbon source. Such LMFP nanospheres are assembled by more fine nanocrystals with an average size of 18.3 nm. Moreover, the preferential crystal orientation along the [010] direction and certain antisite lattice defects can be identified in LMFP nanocrystals, which promote rapid diffusion of Li ions and generate more active sites for the electrochemical reaction. Moreover, such N-doped GNR networks, wrapped between LMFP/carbon nanospheres, are beneficial to the fast mobility of electrons and good penetration of the electrolyte. As expected, the as-prepared LMFP/carbon multicomposite presents the outstanding electrochemical performance, including the large initial discharge capacity of 168.8 mA h g, good rate capability, and excellent long-term cycling stability over 2000 cycles. Therefore, the biomineralization method is demonstrated here to be effective to manipulate the microstructure of multicomponent phosphate cathode materials based on the requirement of capacity, rate capability, and cycle stability for LIBs.

摘要

生物矿化技术是一种可行且有前途的方法,可用于制造具有分级纳米结构的磷酸盐阴极材料,以用于高性能锂离子电池 (LIB)。在这项工作中,为了提高 LiMnFePO(LMFP)的电化学性能,通过使用酵母细胞作为成核剂、自组装模板和碳源的生物矿化,原位包裹具有氮掺杂石墨烯纳米带 (GNR) 的分层 LMFP/碳纳米球。这样的 LMFP 纳米球由平均尺寸为 18.3nm 的更细的纳米晶组装而成。此外,可以在 LMFP 纳米晶中识别出沿[010]方向的择优晶体取向和一定的反位晶格缺陷,这有利于锂离子的快速扩散并产生更多的电化学反应活性位。此外,这种氮掺杂 GNR 网络包裹在 LMFP/碳纳米球之间,有利于电子的快速迁移和电解质的良好渗透。不出所料,所制备的 LMFP/碳多复合材料表现出出色的电化学性能,包括 168.8mA h g 的初始大放电容量、良好的倍率性能和超过 2000 次循环的优异长期循环稳定性。因此,这里展示了生物矿化方法在根据 LIB 对容量、倍率性能和循环稳定性的要求来控制多组分磷酸盐阴极材料的微观结构方面是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验