Suppr超能文献

嘧啶在中枢神经系统中作用的新视角。

New perspectives on the roles of pyrimidines in the central nervous system.

作者信息

Löffler M, Carrey E A, Zameitat E

机构信息

a Institute of Physiological Chemistry, Faculty of Medicine, Philipps-University Marburg , Marburg , Germany.

b Institute of Child Health, University College London , GB.

出版信息

Nucleosides Nucleotides Nucleic Acids. 2018;37(5):290-306. doi: 10.1080/15257770.2018.1453076. Epub 2018 Apr 25.

Abstract

Since 1956, when exogenous uridine and cytidine were found to be necessary for the maintenance of perfused rat brain function, the co-existence of de novo synthesis, salvage pathways and removal of pyrimidine bases in the CNS has been a controversial subject. Here, we review studies on metabolites and enzymes of pyrimidine metabolism through more than 60 years. In view of known and newly-described inherited pyrimidine and purine disorders - some with complex clinical profiles of neurological impairments - we underline the necessity to investigate how the different pathways work together in the developing brain and then sustain plasticity, regeneration and neuro-transmission in the adult CNS. Experimentally, early incorporation studies in animal brain slices and homogenates with radio-labelled nucleosides or precursors demonstrated salvage activity or de novo synthesis. Later, the nucleoside transporters and organic anionic transporters underlying uptake of metabolites and anti-pyrimidine drugs in the CNS were identified. Recently, the expression of de novo enzymes in glial cells and neurons was verified using (immuno) histochemical and in-situ-hybridization techniques. Adult brain was shown to take up or produce all pyrimidine (deoxy) ribonucleosides or, after uptake and phosphorolysis of nucleosides, to make use of ribose for different purposes, including energy. More recently, non-canonical pyrimidine bases (5mC, 5hmC) have been found most notably in brain, pointing to considerable postreplicative DNA metabolism, with the need for pyrimidine-specific enzymes. Even more perspectives are emerging, with advances in genome analysis and in the manipulation of expression from the gene.

摘要

自1956年发现外源性尿苷和胞苷对维持灌注大鼠脑功能是必需的以来,中枢神经系统中嘧啶碱基的从头合成、补救途径和清除的共存一直是一个有争议的话题。在这里,我们回顾了60多年来关于嘧啶代谢的代谢物和酶的研究。鉴于已知的和新描述的遗传性嘧啶和嘌呤疾病——其中一些具有复杂的神经功能障碍临床特征——我们强调有必要研究不同途径在发育中的大脑中如何协同工作,然后在成体中枢神经系统中维持可塑性、再生和神经传递。在实验上,早期用放射性标记的核苷或前体对动物脑切片和匀浆进行掺入研究,证明了补救活性或从头合成。后来,确定了中枢神经系统中代谢物和抗嘧啶药物摄取所涉及的核苷转运体和有机阴离子转运体。最近,使用(免疫)组织化学和原位杂交技术验证了神经胶质细胞和神经元中从头合成酶的表达。已表明成体脑能够摄取或产生所有嘧啶(脱氧)核糖核苷,或者在摄取核苷并进行磷酸解后,将核糖用于不同目的,包括能量代谢。最近,在脑中最显著地发现了非经典嘧啶碱基(5mC、5hmC),这表明存在大量复制后DNA代谢,需要嘧啶特异性酶。随着基因组分析和基因表达操纵技术的进步,更多的观点正在涌现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验