Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , Boulevard 113 y 64 , 1900 La Plata , Argentina.
GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany.
Nano Lett. 2018 May 9;18(5):3303-3310. doi: 10.1021/acs.nanolett.8b01281. Epub 2018 May 1.
Molecular design of biosensors based on enzymatic processes taking place in nanofluidic elements is receiving increasing attention by the scientific community. In this work, we describe the construction of novel ultrasensitive enzymatic nanopore biosensors employing "reactive signal amplifiers" as key elements coupled to the transduction mechanism. The proposed framework offers innovative design concepts not only to amplify the detected ionic signal and develop ultrasensitive nanopore-based sensors but also to construct nanofluidic diodes displaying specific chemo-reversible rectification properties. The integrated approach is demonstrated by electrostatically assembling poly(allylamine) on the anionic pore walls followed by the assembly of urease. We show that the cationic weak polyelectrolyte acts as a "reactive signal amplifier" in the presence of local pH changes induced by the enzymatic reaction. These bioinduced variations in proton concentration ultimately alter the protonation degree of the polyamine resulting in amplifiable, controlled, and reproducible changes in the surface charge of the pore walls, and consequently on the generated ionic signals. The "iontronic" response of the as-obtained devices is fully reversible, and nanopores are reused and assayed with different urea concentrations, thus ensuring reliable design. The limit of detection (LOD) was 1 nM. To the best of our knowledge, this value is the lowest LOD reported to date for enzymatic urea detection. In this context, we envision that this approach based on the use of "reactive signal amplifiers" into solid-state nanochannels will provide new alternatives for the molecular design of highly sensitive nanopore biosensors as well as (bio)chemically addressable nanofluidic elements.
基于纳米流体元件中发生的酶促过程的生物传感器的分子设计受到科学界越来越多的关注。在这项工作中,我们描述了采用“反应信号放大器”作为关键元件与转换机制相结合的新型超灵敏酶纳米孔生物传感器的构建。所提出的框架不仅提供了创新的设计理念,用于放大检测到的离子信号并开发基于超灵敏纳米孔的传感器,而且还构建了显示特定化学可逆整流特性的纳米流体二极管。通过静电组装聚烯丙胺在阴离子孔壁上,然后组装脲酶,证明了这种集成方法。我们表明,阳离子弱聚电解质在酶促反应诱导的局部 pH 变化存在的情况下充当“反应信号放大器”。这些生物诱导的质子浓度变化最终改变聚胺的质子化程度,从而导致可放大、可控和可重复的孔壁表面电荷变化,并因此导致产生的离子信号变化。所获得的器件的“离子电子”响应是完全可逆的,纳米孔可以重复使用并用于不同尿素浓度的检测,从而确保了可靠的设计。检测限 (LOD) 为 1 nM。据我们所知,这是迄今为止报道的用于酶促尿素检测的最低 LOD 值。在这种情况下,我们设想这种基于使用“反应信号放大器”进入固态纳米通道的方法将为高度灵敏的纳米孔生物传感器的分子设计以及(生物)化学可寻址的纳米流体元件提供新的选择。