Han Xiaoxia, Huang Ju, Jing Xiangxiang, Yang Dayan, Lin Han, Wang Zhigang, Li Pan, Chen Yu
Chongqing Key Laboratory of Ultrasound Molecular Imaging , Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University . Chongqing 400010 , People's Republic of China.
Department of Ultrasound , Hainan General Hospital , Haikou 570311 , People's Republic of China.
ACS Nano. 2018 May 22;12(5):4545-4555. doi: 10.1021/acsnano.8b00899. Epub 2018 Apr 30.
The conventional inorganic semiconductors are not suitable for in vivo therapeutic nanomedicine because of the lack of an adequate and safe irradiation source to activate them. This work reports on the rational design of titania (TiO)-based semiconductors for enhanced and synergistic sono-/photoinduced tumor eradication by creating an oxygen-deficient TiO layer onto the surface of TiO nanocrystals, which can create a crystalline-disordered core/shell structure (TiO@TiO) with black color. As found in the lessons from traditional photocatalysis, such an oxygen-deficient TiO layer with abundant oxygen defects facilitates and enhances the separation of electrons (e) and holes (h) from the energy-band structure upon external ultrasound irradiation, which can significantly improve the efficacy of sono-triggered sonocatalytic tumor therapy. Such an oxygen-deficient TiO layer can also endow black titania nanoparticles with high photothermal-conversion efficiency (39.8%) at the NIR-II biowindow (1064 nm) for enhanced photothermal hyperthermia. Both in vitro cell level and systematic in vivo tumor-bearing mice xenograft evaluations have demonstrated the high synergistic efficacy of combined and enhanced sonodynamic therapy and photothermal ablation as assisted by oxygen-deficient black titania, which has achieved complete tumor eradication with high therapeutic biosafety and without obvious reoccurrence. This work not only provides the paradigm of high therapeutic efficacy of a combined sono-/photoinduced tumor-treatment protocol but also significantly broadens the nanomedical applications of semiconductor-based nanoplatforms by rational design of their nanostructures and control of their physiochemical properties.
传统的无机半导体不适合用于体内治疗性纳米药物,因为缺乏激活它们的合适且安全的辐照源。这项工作报道了基于二氧化钛(TiO)的半导体的合理设计,通过在TiO纳米晶体表面形成缺氧的TiO层,实现增强和协同的声/光诱导肿瘤根除,该缺氧层可形成具有黑色的晶体无序核/壳结构(TiO@TiO)。正如传统光催化研究中所发现的,这种具有大量氧缺陷的缺氧TiO层在外部超声辐照下有助于并增强了电子(e)和空穴(h)从能带结构中的分离,这可以显著提高声触发的声催化肿瘤治疗的效果。这种缺氧的TiO层还可使黑色二氧化钛纳米颗粒在近红外II生物窗口(1064 nm)具有高光热转换效率(39.8%),以增强光热热疗。体外细胞水平和系统性体内荷瘤小鼠异种移植评估均表明,缺氧黑色二氧化钛辅助的联合增强声动力治疗和光热消融具有高协同疗效,已实现完全根除肿瘤,具有高治疗生物安全性且无明显复发。这项工作不仅提供了联合声/光诱导肿瘤治疗方案的高治疗效果范例,还通过合理设计其纳米结构和控制其物理化学性质,显著拓宽了基于半导体的纳米平台的纳米医学应用。