Suppr超能文献

PaMM:用于改进人体再识别的姿态感知多shot 匹配。

PaMM: Pose-Aware Multi-Shot Matching for Improving Person Re-Identification.

出版信息

IEEE Trans Image Process. 2018 Aug;27(8):3739-3752. doi: 10.1109/TIP.2018.2815840.

Abstract

Person re-identification is the problem of recognizing people across different images or videos with non-overlapping views. Although a significant progress has been made in person re-identification over the last decade, it remains a challenging task because the appearances of people can seem extremely different across diverse camera viewpoints and person poses. In this paper, we propose a novel framework for person re-identification by analyzing camera viewpoints and person poses called pose-aware multi-shot matching. It robustly estimates individual poses and efficiently performs multi-shot matching based on the pose information. The experimental results obtained by using public person re-identification data sets show that the proposed methods outperform the current state-of-the-art methods, and are promising for accomplishing person re-identification under diverse viewpoints and pose variances.

摘要

行人重识别是指在不同视角或非重叠视域下识别同一个人的问题。尽管在过去十年中,行人重识别技术已经取得了显著的进展,但它仍然是一个具有挑战性的任务,因为人们的外观在不同的相机视角和姿态下可能会有很大的不同。在本文中,我们提出了一种新的行人重识别框架,通过分析相机视角和行人姿态,称为姿态感知多视角匹配。它能够稳健地估计个体姿态,并基于姿态信息高效地进行多视角匹配。使用公共行人重识别数据集进行的实验结果表明,所提出的方法优于当前最先进的方法,并且有望在不同视角和姿态变化下完成行人重识别任务。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验