IEEE Trans Pattern Anal Mach Intell. 2017 Feb;39(2):356-370. doi: 10.1109/TPAMI.2016.2544310. Epub 2016 Mar 21.
Human eyes can recognize person identities based on small salient regions, i.e., person saliency is distinctive and reliable in pedestrian matching across disjoint camera views. However, such valuable information is often hidden when computing similarities of pedestrian images with existing approaches. Inspired by our user study result of human perception on person saliency, we propose a novel perspective for person re-identification based on learning person saliency and matching saliency distribution. The proposed saliency learning and matching framework consists of four steps: (1) To handle misalignment caused by drastic viewpoint change and pose variations, we apply adjacency constrained patch matching to build dense correspondence between image pairs. (2) We propose two alternative methods, i.e., K-Nearest Neighbors and One-class SVM, to estimate a saliency score for each image patch, through which distinctive features stand out without using identity labels in the training procedure. (3) saliency matching is proposed based on patch matching. Matching patches with inconsistent saliency brings penalty, and images of the same identity are recognized by minimizing the saliency matching cost. (4) Furthermore, saliency matching is tightly integrated with patch matching in a unified structural RankSVM learning framework. The effectiveness of our approach is validated on the four public datasets. Our approach outperforms the state-of-the-art person re-identification methods on all these datasets.
人的眼睛可以基于小的显著区域识别出人的身份,即人的显著性在跨不相交摄像机视角的行人匹配中是独特且可靠的。然而,在使用现有方法计算行人图像的相似度时,这种有价值的信息往往被隐藏了。受我们对人类感知显著性的研究结果的启发,我们提出了一种基于学习显著性和匹配显著性分布的新的行人再识别方法。所提出的显著性学习和匹配框架由四个步骤组成:(1)为了解决由于剧烈视角变化和姿势变化引起的配准问题,我们应用邻域约束补丁匹配来建立图像对之间的密集对应关系。(2)我们提出了两种替代方法,即 K-最近邻和单类 SVM,通过该方法可以为每个图像补丁估计一个显著性得分,通过这种方法可以在不使用训练过程中的身份标签的情况下突出显示显著特征。(3)基于补丁匹配进行显著性匹配。匹配具有不一致显著性的补丁会带来惩罚,而通过最小化显著性匹配代价来识别同一身份的图像。(4)此外,显著性匹配在统一的结构 RankSVM 学习框架中与补丁匹配紧密结合。我们的方法在四个公共数据集上的有效性得到了验证。在所有这些数据集上,我们的方法都优于最先进的行人再识别方法。