IEEE Trans Image Process. 2018 Aug;27(8):3766-3781. doi: 10.1109/TIP.2018.2827330.
The local reference frame (LRF), as an independent coordinate system constructed on the local 3D surface, is broadly employed in 3D local feature descriptors. The benefits of the LRF include rotational invariance and full 3D spatial information, thereby greatly boosting the distinctiveness of a 3D feature descriptor. There are numerous LRF methods in the literature; however, no comprehensive study comparing their repeatability and robustness performance under different application scenarios and nuisances has been conducted. This paper evaluates eight state-of-the-art LRF proposals on six benchmarks with different data modalities (e.g., LiDAR, Kinect, and Space Time) and application contexts (e.g., shape retrieval, 3D registration, and 3D object recognition). In addition, the robustness of each LRF to a variety of nuisances, including varying support radii, Gaussian noise, outliers (shot noise), mesh resolution variation, distance to boundary, keypoint localization error, clutter, occlusion, and partial overlap, is assessed. The experimental study also measures the performance under different keypoint detectors, descriptor matching performance when using different LRFs and feature representation combinations, as well as computational efficiency. Considering the evaluation outcomes, we summarize the traits, advantages, and current limitations of the tested LRF methods.
局部参考框架(LRF)作为一种构建在局部 3D 表面上的独立坐标系,在 3D 局部特征描述符中得到了广泛应用。LRF 的优点包括旋转不变性和全 3D 空间信息,从而大大提高了 3D 特征描述符的独特性。文献中有许多 LRF 方法,但没有对不同应用场景和干扰下的重复性能和鲁棒性进行全面的比较研究。本文在具有不同数据模态(例如 LiDAR、Kinect 和时空)和应用上下文(例如形状检索、3D 配准和 3D 对象识别)的六个基准上评估了八种最先进的 LRF 提案。此外,还评估了每个 LRF 对各种干扰的鲁棒性,包括变化的支持半径、高斯噪声、异常值(散粒噪声)、网格分辨率变化、距离边界、关键点定位误差、杂波、遮挡和部分重叠。实验研究还测量了不同关键点检测器下的性能、使用不同 LRF 和特征表示组合的描述符匹配性能以及计算效率。考虑到评估结果,我们总结了测试的 LRF 方法的特点、优点和当前的局限性。