Suppr超能文献

LRF-Net:用于3D局部形状描述与匹配的局部参考系学习

LRF-Net: Learning Local Reference Frames for 3D Local Shape Description and Matching.

作者信息

Zhu Angfan, Yang Jiaqi, Zhao Weiyue, Cao Zhiguo

机构信息

National Key Laboratory of Science and Technology on Multi-Spectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.

National Engineering Laboratory for Integrated aero-Space-Ground-Ocean Big Data Application Technology, School of Computer Science, Northwestern Polytechnical University, Xi'an 710129, China.

出版信息

Sensors (Basel). 2020 Sep 7;20(18):5086. doi: 10.3390/s20185086.

Abstract

The local reference frame (LRF) acts as a critical role in 3D local shape description and matching. However, most existing LRFs are hand-crafted and suffer from limited repeatability and robustness. This paper presents the first attempt to learn an LRF via a Siamese network that needs weak supervision only. In particular, we argue that each neighboring point in the local surface gives a unique contribution to LRF construction and measure such contributions via learned weights. Extensive analysis and comparative experiments on three public datasets addressing different application scenarios have demonstrated that LRF-Net is more repeatable and robust than several state-of-the-art LRF methods (LRF-Net is only trained on one dataset). We show that LRFNet achieves 0.686 MeanCos performance on the UWA 3D modeling (UWA3M) dataset, outperforming the closest method by 0.18. In addition, LRF-Net can significantly boost the local shape description and 6-DoF pose estimation performance when matching 3D point clouds.

摘要

局部参考系(LRF)在三维局部形状描述和匹配中起着关键作用。然而,现有的大多数局部参考系都是手工构建的,具有有限的可重复性和鲁棒性。本文首次尝试通过仅需弱监督的暹罗网络来学习局部参考系。具体而言,我们认为局部表面中的每个相邻点对局部参考系的构建都有独特的贡献,并通过学习到的权重来衡量这些贡献。针对不同应用场景的三个公共数据集进行的广泛分析和对比实验表明,LRF-Net比几种最先进的局部参考系方法具有更高的可重复性和鲁棒性(LRF-Net仅在一个数据集上进行训练)。我们表明,LRFNet在UWA 3D建模(UWA3M)数据集上实现了0.686的平均余弦相似度性能,比最接近的方法高出0.18。此外,在匹配三维点云时,LRF-Net可以显著提高局部形状描述和六自由度姿态估计性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4590/7570463/39412dfa90de/sensors-20-05086-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验