Clinical Neurocardiology Section, Clinical Neurosciences Program/Division of Intramural Research/National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland (Y.J., Y.S., P.S., R.I., D.S.G.), and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.)
Clinical Neurocardiology Section, Clinical Neurosciences Program/Division of Intramural Research/National Institute of Neurological Disorders and Stroke/National Institutes of Health, Bethesda, Maryland (Y.J., Y.S., P.S., R.I., D.S.G.), and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (Y.S.).
J Pharmacol Exp Ther. 2018 Jul;366(1):113-124. doi: 10.1124/jpet.118.248492. Epub 2018 Apr 26.
The catecholaldehyde hypothesis posits that 3,4-dihydroxyphenylacetaldehyde (DOPAL), an obligate intermediary metabolite of dopamine, is an autotoxin that challenges neuronal homeostasis in catecholaminergic neurons. DOPAL toxicity may involve protein modifications, such as oligomerization of -synuclein (AS). Potential interactions between DOPAL and other proteins related to catecholaminergic neurodegeneration, however, have not been systemically explored. This study examined DOPAL-induced protein-quinone adduct formation ("quinonization") and protein oligomerization, ubiquitination, and aggregation in cultured MO3.13 human oligodendrocytes and PC12 rat pheochromocytoma cells and in test tube experiments. Using near-infrared fluorescence spectroscopy, we detected spontaneous DOPAL oxidation to DOPAL-quinone, DOPAL-induced quinonization of intracellular proteins in both cell lines, and DOPAL-induced quinonization of several proteins related to catecholaminergic neurodegeneration, including AS, the type 2 vesicular monoamine transporter, glucocerebrosidase, ubiquitin, and l-aromatic-amino-acid decarboxylase (LAAAD). DOPAL also oligomerized AS, ubiquitin, and LAAAD; inactivated LAAAD (IC 54 M); evoked substantial intracellular protein ubiquitination; and aggregated intracellular AS. Remarkably, -acetylcysteine, which decreases DOPAL-quinone formation, attenuated or prevented all of these protein modifications and functional changes. The results fit with the proposal that treatments based on decreasing the formation and oxidation of DOPAL may slow or prevent catecholaminergic neurodegeneration.
儿茶酚乙醛假说认为,3,4-二羟苯乙醛(DOPAL),多巴胺的必需中间代谢产物,是一种自身毒素,挑战儿茶酚胺能神经元中的神经元内稳态。DOPAL 毒性可能涉及蛋白质修饰,如α-突触核蛋白(AS)的寡聚化。然而,DOPAL 与其他与儿茶酚胺能神经退行性变相关的蛋白质之间的潜在相互作用尚未系统地探索。本研究检查了 DOPAL 诱导的蛋白质-醌加合物形成(“醌化”)和蛋白质寡聚化、泛素化和聚集在培养的 MO3.13 人少突胶质细胞和 PC12 大鼠嗜铬细胞瘤细胞中和试管实验中。使用近红外荧光光谱法,我们检测到 DOPAL 自发氧化为 DOPAL-醌,DOPAL 在两种细胞系中诱导细胞内蛋白质的醌化,以及 DOPAL 诱导儿茶酚胺能神经退行性变相关的几种蛋白质的醌化,包括 AS、2 型囊泡单胺转运体、葡萄糖脑苷脂酶、泛素和 l-芳香族氨基酸脱羧酶(LAAAD)。DOPAL 还寡聚化 AS、泛素和 LAAAD;失活 LAAAD(IC 54 M);引发大量细胞内蛋白质泛素化;并聚集细胞内 AS。值得注意的是,-乙酰半胱氨酸可减少 DOPAL-醌的形成,减轻或阻止所有这些蛋白质修饰和功能变化。结果符合这样的假设,即基于减少 DOPAL 的形成和氧化的治疗方法可能会减缓或预防儿茶酚胺能神经退行性变。