Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
Department of Chemistry Biomedicinskt Centrum, Uppsala University, Box 576, 75123 Uppsala, Sweden.
Science. 2018 Apr 27;360(6387):423-427. doi: 10.1126/science.aar5839.
The cellular processes underpinning life are orchestrated by proteins and their interactions. The associated structural and dynamic heterogeneity, despite being key to function, poses a fundamental challenge to existing analytical and structural methodologies. We used interferometric scattering microscopy to quantify the mass of single biomolecules in solution with 2% sequence mass accuracy, up to 19-kilodalton resolution, and 1-kilodalton precision. We resolved oligomeric distributions at high dynamic range, detected small-molecule binding, and mass-imaged proteins with associated lipids and sugars. These capabilities enabled us to characterize the molecular dynamics of processes as diverse as glycoprotein cross-linking, amyloidogenic protein aggregation, and actin polymerization. Interferometric scattering mass spectrometry allows spatiotemporally resolved measurement of a broad range of biomolecular interactions, one molecule at a time.
细胞生命活动由蛋白质及其相互作用来调控。尽管这些相互作用的结构和动态异质性是其功能的关键,但这也给现有的分析和结构方法学带来了巨大的挑战。我们利用干涉散射显微镜,以 2%序列质量精度、19 千道尔顿分辨率和 1 千道尔顿精度,对溶液中单分子的质量进行了定量测量。我们在高动态范围内解析了低聚物的分布,检测了小分子的结合,并对带有相关脂类和糖类的蛋白质进行了质量成像。这些功能使我们能够对糖蛋白交联、淀粉样蛋白聚集和肌动蛋白聚合等多种不同的过程的分子动力学进行表征。干涉散射质谱法允许对广泛的生物分子相互作用进行时空分辨的单次分子测量。