University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia.
Queensland Brain Institute, University of Queensland, Brisbane, Australia.
Mol Psychiatry. 2019 Nov;24(11):1707-1719. doi: 10.1038/s41380-018-0049-x. Epub 2018 Apr 27.
A number of genetic studies have identified rare protein-coding DNA variations associated with autism spectrum disorder (ASD), a neurodevelopmental disorder with significant genetic etiology and heterogeneity. In contrast, the contributions of functional, regulatory genetic variations that occur in the extensive non-protein-coding regions of the genome remain poorly understood. Here we developed a genome-wide analysis to identify the rare single nucleotide variants (SNVs) that occur in non-coding regions and determined the regulatory function and evolutionary conservation of these variants. Using publicly available datasets and computational predictions, we identified SNVs within putative regulatory regions in promoters, transcription factor binding sites, and microRNA genes and their target sites. Overall, we found that the regulatory variants in ASD cases were enriched in ASD-risk genes and genes involved in fetal neurodevelopment. As with previously reported coding mutations, we found an enrichment of the regulatory variants associated with dysregulation of neurodevelopmental and synaptic signaling pathways. Among these were several rare inherited SNVs found in the mature sequence of microRNAs predicted to affect the regulation of ASD-risk genes. We show a paternally inherited miR-873-5p variant with altered binding affinity for several risk-genes including NRXN2 and CNTNAP2 putatively overlay maternally inherited loss-of-function coding variations in NRXN1 and CNTNAP2 to likely increase the genetic liability in an idiopathic ASD case. Our analysis pipeline provides a new resource for identifying loss-of-function regulatory DNA variations that may contribute to the genetic etiology of complex disorders.
许多遗传研究已经确定了与自闭症谱系障碍(ASD)相关的罕见蛋白质编码 DNA 变异,ASD 是一种具有重要遗传病因和异质性的神经发育障碍。相比之下,广泛存在于基因组非编码区的功能性、调节性遗传变异的贡献仍知之甚少。在这里,我们开发了一种全基因组分析方法来识别发生在非编码区的罕见单核苷酸变异(SNV),并确定这些变异的调节功能和进化保守性。利用公开可用的数据集和计算预测,我们在启动子、转录因子结合位点和 microRNA 基因及其靶位点内鉴定了假定的调控区域中的 SNV。总的来说,我们发现 ASD 病例中的调节变异在 ASD 风险基因和参与胎儿神经发育的基因中富集。与先前报道的编码突变一样,我们发现与神经发育和突触信号通路失调相关的调节变异富集。其中包括几个在 microRNA 的成熟序列中发现的罕见遗传性 SNV,这些 microRNA 被预测会影响 ASD 风险基因的调节。我们展示了一个父系遗传的 miR-873-5p 变体,其与几个风险基因的结合亲和力发生改变,包括 NRXN2 和 CNTNAP2,推测母系遗传的 NRXN1 和 CNTNAP2 缺失功能的编码变异可能会增加一个特发性 ASD 病例的遗传易感性。我们的分析流程提供了一种新的资源,用于识别可能导致复杂疾病遗传病因的功能丧失性调节 DNA 变异。