Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
Max Planck Institute for Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany.
Nat Commun. 2018 Apr 27;9(1):1710. doi: 10.1038/s41467-018-03727-6.
G protein-coupled receptors (GPCRs) are the largest class of membrane receptors, playing a key role in the regulation of processes as varied as neurotransmission and immune response. Evidence for GPCR oligomerisation has been accumulating that challenges the idea that GPCRs function solely as monomeric receptors; however, GPCR oligomerisation remains controversial primarily due to the difficulties in comparing evidence from very different types of structural and dynamic data. Using a combination of single-molecule and ensemble FRET, double electron-electron resonance spectroscopy, and simulations, we show that dimerisation of the GPCR neurotensin receptor 1 is regulated by receptor density and is dynamically tuneable over the physiological range. We propose a "rolling dimer" interface model in which multiple dimer conformations co-exist and interconvert. These findings unite previous seemingly conflicting observations, provide a compelling mechanism for regulating receptor signalling, and act as a guide for future physiological studies.
G 蛋白偶联受体(GPCRs)是最大的一类膜受体,在神经传递和免疫反应等各种过程的调节中发挥着关键作用。越来越多的证据表明 GPCR 会发生寡聚化,这挑战了 GPCR 仅作为单体受体发挥作用的观点;然而,GPCR 寡聚化仍然存在争议,主要是因为很难比较来自非常不同类型的结构和动态数据的证据。我们使用单分子和整体荧光共振能量转移、双电子-电子共振波谱学和模拟的组合,表明 GPCR 神经降压素受体 1 的二聚化受受体密度调节,并在生理范围内具有动态可调性。我们提出了一个“滚动二聚体”界面模型,其中多个二聚体构象共存并相互转换。这些发现将以前看似相互矛盾的观察结果统一起来,为调节受体信号提供了一个有说服力的机制,并为未来的生理研究提供了指导。