Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain.
Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain.
Aquat Toxicol. 2018 Jul;200:13-20. doi: 10.1016/j.aquatox.2018.04.011. Epub 2018 Apr 22.
Over the last decades, the growth in nanotechnology has provoked an increase in the number of its applications and consumer products that incorporate nanomaterials in their formulation. Metal nanoparticles are released to the marine environment and they can interact with cells by colloids forces establish a nano-bio interface. This interface can be compatible or generate bioadverse effects to cells. The daily use of CeO nanoparticles (CeO NPs) in industrial catalysis, sunscreen, fuel cells, fuel additives and biomedicine and their potential release into aquatic environments has turned them into a new emerging pollutant of concern. It is necessary to assess of effects of CeO NPs in aquatic organisms and understand the potential mechanisms of action of CeO NP toxicity to improve our knowledge about the intrinsic and extrinsic characteristic of CeO NPs and the interaction of CeO NPs with biomolecules in different environment and biological fluids. The conserved innate immune system of bivalves represents a useful tool for studying immunoregulatory responses when cells are exposed to NPs. In this context, the effects of two different CeO NPs with different physico-chemical characteristics (size, shape, zeta potential and Ce/Ce ratio) and different behavior with biomolecules in plasma fluid were studied in a series of in vitro assays using primary hemocytes from Mytilus galloprovincialis. Different cellular responses such as lysosome membrane stability, phagocytosis capacity and extracellular reactive oxygen species (ROS) production were evaluated. Our results indicate that the agglomeration state of CeO NPs in the exposure media did not appear to have a substantial role in particle effects, while differences in shape, zeta potential and biocorona formation in NPs appear to be important in provoking negative impacts on hemocytes. The negative charge and the rounded shape of CeO NPs, which formed Cu, Zn-SOD biocorona in hemolymph serum (HS), triggered higher changes in the biomarker of stress (LMS) and immunological parameters (ROS and phagocytosis capacity). On the other hand, the almost neutral surface charge and well-faceted shape of CeO NPs did not show either biocorona formation in HS under tested conditions or significant responses. According to the results, the most relevant conclusion of this work is that not only the physicochemical characterization of CeO NPs plays an important role in NPs toxicity but also the study of the interaction of NPs with biological fluids is essential to know it behavior and toxicity at cellular level.
在过去的几十年中,纳米技术的发展促进了其应用和包含纳米材料的消费产品数量的增加。金属纳米颗粒被释放到海洋环境中,它们可以通过胶体力与细胞相互作用,建立纳米生物界面。这个界面可能与细胞兼容,也可能产生生物不良反应。CeO 纳米颗粒(CeO NPs)在工业催化、防晒霜、燃料电池、燃料添加剂和生物医学中的日常使用以及它们可能释放到水生环境中,已使它们成为一种新的关注的新兴污染物。有必要评估 CeO NPs 在水生生物中的影响,并了解 CeO NP 毒性的潜在作用机制,以提高我们对 CeO NPs 的内在和外在特性以及 CeO NPs 与不同环境和生物流体中生物分子相互作用的认识。双壳类动物的保守先天免疫系统是研究细胞暴露于纳米颗粒时免疫调节反应的有用工具。在这种情况下,使用来自贻贝(Mytilus galloprovincialis)的原代血细胞,在一系列体外实验中研究了两种具有不同理化特性(大小、形状、Zeta 电位和 Ce/Ce 比)和不同在血浆流体中与生物分子相互作用的 CeO NPs 的影响。评估了溶酶体膜稳定性、吞噬能力和细胞外活性氧物种(ROS)产生等不同的细胞反应。我们的结果表明,暴露介质中 CeO NPs 的团聚状态似乎对颗粒效应没有实质性作用,而 NPs 的形状、Zeta 电位和生物冠形成的差异在引发对血细胞的负面影响方面似乎很重要。带负电荷和圆形形状的 CeO NPs 在血淋巴血清(HS)中形成 Cu、Zn-SOD 生物冠,引发应激生物标志物(LMS)和免疫参数(ROS 和吞噬能力)的变化更大。另一方面,在测试条件下,CeO NPs 的几乎中性表面电荷和多面形状既没有在 HS 中形成生物冠,也没有表现出明显的反应。根据结果,这项工作的最重要结论是,不仅 CeO NPs 的物理化学特性在 NPs 毒性中起着重要作用,而且研究 NPs 与生物流体的相互作用对于了解其在细胞水平上的行为和毒性也是必不可少的。