Haspel H C, Revillame J, Rosen O M
Memorial Sloan-Kettering Cancer Center, New York, New York 10021.
J Cell Physiol. 1988 Aug;136(2):361-6. doi: 10.1002/jcp.1041360221.
We have used a Chinese hamster ovary cell line deficient in N-acetylglucosaminyltransferase 1 activity (Lec1) to study the effects of altered asparagine-linked oligosaccharides on the structure, biosynthesis, and function of glucose transporter protein. Immunoblots of membranes of Lec1 cells show a glucose transporter protein of Mr 40,000, whereas membranes of wild-type (WT) cells contain a broadly migrating Mr 55,000 form similar to that observed in several other mammalian tissues. The total content of immunoreactive glucose transporters in Lec1 cells is 3.5-fold greater than that of WT cells. Digestion with endoglycosidases, treatment with inhibitors of glycosylation, and interactions with agarose-bound lectins demonstrate that glucose transporters of both cell lines derive from a similar Mr 38,000 core polypeptide and that both contain asparagine-linked oligosaccharide. Transporters in Lec1 cells contain primarily "undecorated" but "trimmed" mannose-type asparagine-linked oligosaccharides, while the protein in WT cells contains a mixture of "decorated" and "trimmed" asparagine-linked oligosaccharides. Biosynthetic and turnover studies demonstrate that Lec1 cells, in contrast to WT cells, are unable fully to process the core asparagine-linked oligosaccharides of maturing glucose transporters. When radiolabeled in methionine-deficient medium both Lec1 and WT cells show similar rates of synthesis and turnover of glucose transporter proteins. It should be noted, however, that starvation for a critical amino acid may alter the ability of the cell to synthesize or degrade proteins. The abilities of Lec1 and WT cells to transport hexoses and to interact with the inhibitor cytochalasin B are very similar. The results indicate that, although altered asparagine-linked glycosylation can affect the content and biogenesis of glucose transporters, these changes do not greatly modify cellular hexose uptake. The possibility that alterations in asparagine-linked glycosylation may change the cell surface localization or acquisition of a "functional conformation" of the glucose transporter is also suggested.
我们使用了一种缺乏N - 乙酰葡糖胺基转移酶1活性的中国仓鼠卵巢细胞系(Lec1)来研究天冬酰胺连接的寡糖变化对葡萄糖转运蛋白的结构、生物合成及功能的影响。Lec1细胞膜的免疫印迹显示有一个分子量为40,000的葡萄糖转运蛋白,而野生型(WT)细胞膜含有一种迁移范围较宽、分子量为55,000的形式,类似于在其他几种哺乳动物组织中观察到的情况。Lec1细胞中免疫反应性葡萄糖转运蛋白的总含量比WT细胞高3.5倍。用内切糖苷酶消化、用糖基化抑制剂处理以及与琼脂糖结合的凝集素相互作用表明,两种细胞系的葡萄糖转运蛋白都源自一个类似的分子量为38,000的核心多肽,且都含有天冬酰胺连接的寡糖。Lec1细胞中的转运蛋白主要含有“未修饰”但“修剪过”的甘露糖型天冬酰胺连接的寡糖,而WT细胞中的蛋白质含有“修饰过”和“修剪过”的天冬酰胺连接的寡糖的混合物。生物合成和周转研究表明,与WT细胞相比,Lec1细胞无法完全处理成熟葡萄糖转运蛋白的核心天冬酰胺连接的寡糖。当在缺乏甲硫氨酸的培养基中进行放射性标记时,Lec1细胞和WT细胞显示出相似的葡萄糖转运蛋白合成和周转速率。然而,应该注意的是,缺乏关键氨基酸可能会改变细胞合成或降解蛋白质的能力。Lec1细胞和WT细胞转运己糖以及与抑制剂细胞松弛素B相互作用的能力非常相似。结果表明,尽管天冬酰胺连接的糖基化改变会影响葡萄糖转运蛋白的含量和生物合成,但这些变化不会显著改变细胞对己糖的摄取。天冬酰胺连接的糖基化改变可能会改变葡萄糖转运蛋白在细胞表面的定位或获得“功能构象”的可能性也被提了出来。