Suppr超能文献

表面线圈用射频脉冲方法:调频脉冲和并行传输。

RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission.

机构信息

Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA.

Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA.

出版信息

J Magn Reson. 2018 Jun;291:84-93. doi: 10.1016/j.jmr.2018.01.012. Epub 2018 Apr 26.

Abstract

The first use of a surface coil to obtain a P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.

摘要

阿克曼(Ackerman)及其同事首次使用表面线圈从完整的大鼠中获得 P NMR 光谱,这开创了磁共振成像(MRI)和磁共振波谱学(MRS)的革命。如今,我们认为在射频线圈外部的区域检测信号是理所当然的;然而,在当时,这个概念是非常不寻常的。自引入以来的大约四十年中,这个简单的想法催生了越来越多的创新,这些创新导致了我们在活体磁共振实验中收集数据的方式发生了变革性的变化,特别是在人类 MRI 方面。这些创新包括基于表面线圈产生的非均匀 B 场进行空间定位和/或编码,从而产生新的光谱定位方法、图像加速以及处理 B 不均匀性甚至降低功率沉积的独特 RF 脉冲。如果没有表面线圈,许多定义 MRI 在临床诊断和生物医学研究中非凡成功的主要技术进步,例如人类连接组计划(Human Connectome Project)等项目,就不可能实现。

相似文献

1
RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission.
J Magn Reson. 2018 Jun;291:84-93. doi: 10.1016/j.jmr.2018.01.012. Epub 2018 Apr 26.
2
Correcting surface coil excitation inhomogeneities in single-shot SPEN MRI.
J Magn Reson. 2015 Oct;259:199-206. doi: 10.1016/j.jmr.2015.08.018. Epub 2015 Sep 4.
4
A transmit-only/receive-only (TORO) RF system for high-field MRI/MRS applications.
Magn Reson Med. 2000 Feb;43(2):284-9. doi: 10.1002/(sici)1522-2594(200002)43:2<284::aid-mrm16>3.0.co;2-c.
5
Microstrip RF surface coil design for extremely high-field MRI and spectroscopy.
Magn Reson Med. 2001 Sep;46(3):443-50. doi: 10.1002/mrm.1212.
6
Ultra-high field MRI: parallel-transmit arrays and RF pulse design.
Phys Med Biol. 2023 Jan 18;68(2). doi: 10.1088/1361-6560/aca4b7.
7
Microstrip Transmission Line RF Coil for a PET/MRI Insert.
Magn Reson Med Sci. 2020 May 1;19(2):147-153. doi: 10.2463/mrms.mp.2019-0137. Epub 2019 Nov 27.
8
[Evaluation of the Effect of Adiabatic Pulse and B1 Shim to the Radio Frequency Homogeneity in Chemical Shift Imaging].
Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016 Apr;72(4):326-33. doi: 10.6009/jjrt.2016_JSRT_72.4.326.
10
Concept for gradient-free MRI on twin natural slices.
MAGMA. 2023 Aug;36(4):671-686. doi: 10.1007/s10334-022-01047-x. Epub 2022 Nov 22.

引用本文的文献

1
Complete solution for rotating frame relaxation functions during adiabatic pulses.
J Magn Reson. 2025 Jan;370:107809. doi: 10.1016/j.jmr.2024.107809. Epub 2024 Dec 2.
2
Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control.
Magn Reson Imaging. 2022 Nov;93:87-96. doi: 10.1016/j.mri.2022.08.006. Epub 2022 Aug 5.

本文引用的文献

1
Imaging at ultrahigh magnetic fields: History, challenges, and solutions.
Neuroimage. 2018 Mar;168:7-32. doi: 10.1016/j.neuroimage.2017.07.007. Epub 2017 Jul 8.
2
Approaching ultimate intrinsic signal-to-noise ratio with loop and dipole antennas.
Magn Reson Med. 2018 Mar;79(3):1789-1803. doi: 10.1002/mrm.26803. Epub 2017 Jul 4.
3
Designing 3D selective adiabatic radiofrequency pulses with single and parallel transmission.
Magn Reson Med. 2018 Feb;79(2):701-710. doi: 10.1002/mrm.26720. Epub 2017 May 12.
4
Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project.
Neuroimage. 2017 Jul 1;154:23-32. doi: 10.1016/j.neuroimage.2016.11.049. Epub 2016 Nov 25.
5
Toward imaging the body at 10.5 tesla.
Magn Reson Med. 2017 Jan;77(1):434-443. doi: 10.1002/mrm.26487. Epub 2016 Oct 21.
6
Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 T (1 GHz) and beyond.
MAGMA. 2016 Jun;29(3):641-56. doi: 10.1007/s10334-016-0559-y. Epub 2016 Apr 20.
8
Simultaneous multislice imaging in dynamic cardiac MRI at 7T using parallel transmission.
Magn Reson Med. 2017 Mar;77(3):1010-1020. doi: 10.1002/mrm.26180. Epub 2016 Mar 7.
9
A 16-channel combined loop-dipole transceiver array for 7 Tesla body MRI.
Magn Reson Med. 2017 Feb;77(2):884-894. doi: 10.1002/mrm.26153. Epub 2016 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验