Suppr超能文献

绝热脉冲期间旋转框架弛豫函数的完整解决方案。

Complete solution for rotating frame relaxation functions during adiabatic pulses.

作者信息

Michaeli Shalom

机构信息

Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.

出版信息

J Magn Reson. 2025 Jan;370:107809. doi: 10.1016/j.jmr.2024.107809. Epub 2024 Dec 2.

Abstract

During adiabatic full passage (AFP) radiofrequency (RF) pulses the relaxation functions are conventionally treated in the Tilting Doubly Rotating Frame (TDRF), or the second rotating frame (SRF) of reference. Such a description is adequate when during the adiabatic passage the magnetization M is perfectly aligned with the time dependent effective magnetic field, B(t), leading to T(t) relaxation, or evolves on a plane perpendicular to B(t), leading to T(t) relaxation. Time evolution of B(t) results in formation of a fictitious magnetic field, which is typically neglected during the AFP pulses operating in adiabatic regime, i.e., given that the adiabatic condition |γdα(t)/dt| ≪ B(t) is well satisfied. Here α(t) is the angle between B(t) and the axis of quantization of the first rotating frame (FRF) z', and dα(t)/dt is the angular velocity. When the fictitious field component cannot be neglected, for the adequate description of relaxation during AFP pulses the solutions for the relaxation functions in a multi-fold rotating frame are necessary. Such a general treatment is currently unavailable for adiabatic RF pulses. Here, we obtain the solution for the relaxation functions in the Tilting Triply Rotating Frame (TTRF) during the Hyperbolic Secant (HS) pulses of the HSn family, HS1 and HS4, where n is the stretching factor. We show that the contribution to the relaxations originating from the non-negligible magnitude of the fictitious field depends on the pulse modulation functions of the AFP pulses and the parameters of the pulses. The corrections to describe the relaxations are given, which may be relevant in specific experimental setups especially for high-resolution NMR.

摘要

在绝热全通过(AFP)射频(RF)脉冲期间,弛豫函数通常在倾斜双旋转框架(TDRF)或第二参考旋转框架(SRF)中进行处理。当在绝热通过期间磁化强度M与随时间变化的有效磁场B(t)完美对齐,导致T(t)弛豫,或者在垂直于B(t)的平面上演变,导致T(t)弛豫时,这样的描述是足够的。B(t)的时间演变会导致形成一个虚拟磁场,在绝热状态下运行的AFP脉冲期间,该虚拟磁场通常被忽略,即假设绝热条件|γdα(t)/dt| ≪ B(t)得到很好的满足。这里α(t)是B(t)与第一旋转框架(FRF)z'的量化轴之间的夹角,dα(t)/dt是角速度。当虚拟场分量不可忽略时,为了充分描述AFP脉冲期间的弛豫,需要在多重旋转框架中求解弛豫函数。目前对于绝热RF脉冲还没有这样的通用处理方法。在这里,我们得到了在HSn族的双曲正割(HS)脉冲HS1和HS4期间倾斜三旋转框架(TTRF)中弛豫函数的解,其中n是拉伸因子。我们表明,源自不可忽略的虚拟场大小对弛豫的贡献取决于AFP脉冲的脉冲调制函数和脉冲参数。给出了描述弛豫的修正,这在特定的实验设置中可能是相关的,特别是对于高分辨率核磁共振。

相似文献

1
Complete solution for rotating frame relaxation functions during adiabatic pulses.
J Magn Reson. 2025 Jan;370:107809. doi: 10.1016/j.jmr.2024.107809. Epub 2024 Dec 2.
3
The time-dependence of exchange-induced relaxation during modulated radio frequency pulses.
J Magn Reson. 2006 Mar;179(1):136-9. doi: 10.1016/j.jmr.2005.11.001. Epub 2005 Nov 17.
5
Deciphering adiabatic rotating frame relaxometry in biological tissues.
Magn Reson Med. 2024 Dec;92(6):2670-2682. doi: 10.1002/mrm.30240. Epub 2024 Aug 4.
6
Transverse relaxation in the rotating frame induced by chemical exchange.
J Magn Reson. 2004 Aug;169(2):293-9. doi: 10.1016/j.jmr.2004.05.010.
7
RAFFn relaxation rate functions.
J Magn Reson. 2018 Aug;293:28-33. doi: 10.1016/j.jmr.2018.05.006. Epub 2018 May 24.
9
Predicting the effect of relaxation during frequency-selective adiabatic pulses.
J Magn Reson. 2017 Nov;284:99-103. doi: 10.1016/j.jmr.2017.09.014. Epub 2017 Oct 3.
10
Universal equations for linear adiabatic pulses and characterization of partial adiabaticity.
J Magn Reson. 2002 May;156(1):26-40. doi: 10.1006/jmre.2002.2531.

本文引用的文献

1
Existence of Singularities in NMR Relaxation Dispersion Profiles: Implications for Hidden Dynamics.
J Am Chem Soc. 2024 Sep 4;146(35):24467-24475. doi: 10.1021/jacs.4c06720. Epub 2024 Aug 22.
2
Distance from main arteries influences microstructural and functional brain tissue characteristics.
Neuroimage. 2024 Jan;285:120502. doi: 10.1016/j.neuroimage.2023.120502. Epub 2023 Dec 14.
3
Utility of quantitative MRI metrics in brain ageing research.
Front Aging Neurosci. 2023 Mar 9;15:1099499. doi: 10.3389/fnagi.2023.1099499. eCollection 2023.
4
Tremor associated with similar structural networks in Parkinson's disease and essential tremor.
Parkinsonism Relat Disord. 2022 Feb;95:28-34. doi: 10.1016/j.parkreldis.2021.12.014. Epub 2021 Dec 23.
5
Differential diagnosis of tremor syndromes using MRI relaxometry.
Parkinsonism Relat Disord. 2020 Dec;81:190-193. doi: 10.1016/j.parkreldis.2020.10.048. Epub 2020 Nov 4.
6
Achieving pure spin effects by artifact suppression in methyl adiabatic relaxation experiments.
J Biomol NMR. 2020 May;74(4-5):223-228. doi: 10.1007/s10858-020-00312-2. Epub 2020 Apr 24.
7
Rotating frame MRI relaxations as markers of diffuse white matter abnormalities in multiple sclerosis.
Neuroimage Clin. 2020;26:102234. doi: 10.1016/j.nicl.2020.102234. Epub 2020 Mar 2.
9
RAFFn relaxation rate functions.
J Magn Reson. 2018 Aug;293:28-33. doi: 10.1016/j.jmr.2018.05.006. Epub 2018 May 24.
10
RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission.
J Magn Reson. 2018 Jun;291:84-93. doi: 10.1016/j.jmr.2018.01.012. Epub 2018 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验