Suppr超能文献

增强型蒙特卡罗方法在蛋白质建模中的应用,包括结合的绝对自由能计算。

Enhanced Monte Carlo Methods for Modeling Proteins Including Computation of Absolute Free Energies of Binding.

机构信息

Department of Chemistry , Yale University , New Haven , Connecticut 06520-8107 , United States.

出版信息

J Chem Theory Comput. 2018 Jun 12;14(6):3279-3288. doi: 10.1021/acs.jctc.8b00031. Epub 2018 May 8.

Abstract

The generation of a complete ensemble of geometrical configurations is required to obtain reliable estimations of absolute binding free energies by alchemical free energy methods. Molecular dynamics (MD) is the most popular sampling method, but the representation of large biomolecular systems may be incomplete owing to energetic barriers that impede efficient sampling of the configurational space. Monte Carlo (MC) methods can possibly overcome this issue by adapting the attempted movement sizes to facilitate transitions between alternative local-energy minima. In this study, we present an MC statistical mechanics algorithm to explore the protein-ligand conformational space with emphasis on the motions of the protein backbone and side chains. The parameters for each MC move type were optimized to better reproduce conformational distributions of 18 dipeptides and the well-studied T4-lysozyme L99A protein. Next, the performance of the improved MC algorithms was evaluated by computing absolute free energies of binding for L99A lysozyme with benzene and seven analogs. Results for benzene with L99A lysozyme from MD and the optimized MC protocol were found to agree within 0.6 kcal/mol, while a mean unsigned error of 1.2 kcal/mol between MC results and experiment was obtained for the seven benzene analogs. Significant advantages in computation speed are also reported with MC over MD for similar extents of configurational sampling.

摘要

为了通过基于热力学循环的自由能计算方法获得可靠的绝对结合自由能估计,需要生成完整的几何构型集合。分子动力学(MD)是最常用的采样方法,但由于能量障碍会阻碍构象空间的有效采样,因此可能无法完整表示大型生物分子系统。蒙特卡罗(MC)方法可以通过调整尝试移动的大小来克服这个问题,以促进在替代局部能量最小值之间的转变。在这项研究中,我们提出了一种 MC 统计力学算法,用于探索蛋白质-配体构象空间,重点是蛋白质主链和侧链的运动。优化了每种 MC 移动类型的参数,以更好地重现 18 种二肽和研究充分的 T4 溶菌酶 L99A 蛋白的构象分布。接下来,通过计算 L99A 溶菌酶与苯和七种类似物的结合绝对自由能来评估改进后的 MC 算法的性能。发现 L99A 溶菌酶与苯的 MD 和优化后的 MC 方案之间的结果在 0.6 kcal/mol 以内一致,而对于七种苯类似物,MC 结果与实验之间的平均未签名误差为 1.2 kcal/mol。与 MD 相比,MC 在进行类似构象采样时在计算速度方面也具有显著优势。

相似文献

3
Reversibly Sampling Conformations and Binding Modes Using Molecular Darting.使用分子镖射技术来可逆地采样构象和结合模式。
J Chem Theory Comput. 2021 Jan 12;17(1):302-314. doi: 10.1021/acs.jctc.0c00752. Epub 2020 Dec 8.
5
Protein-ligand binding free energies from exhaustive docking.从详尽对接中获得蛋白质-配体结合自由能。
J Phys Chem B. 2012 Jun 14;116(23):6872-9. doi: 10.1021/jp212646s. Epub 2012 Apr 2.

引用本文的文献

6
Recent Developments in Free Energy Calculations for Drug Discovery.药物发现中自由能计算的最新进展。
Front Mol Biosci. 2021 Aug 11;8:712085. doi: 10.3389/fmolb.2021.712085. eCollection 2021.

本文引用的文献

1
Improved Treatment of Nucleosides and Nucleotides in the OPLS-AA Force Field.OPLS-AA力场中核苷和核苷酸的改进处理
Chem Phys Lett. 2017 Sep 1;683:276-280. doi: 10.1016/j.cplett.2017.02.049. Epub 2017 Feb 16.
6
New Monte Carlo Based Technique To Study DNA-Ligand Interactions.基于蒙特卡洛的研究DNA-配体相互作用的新方法。
J Chem Theory Comput. 2015 Dec 8;11(12):5598-605. doi: 10.1021/acs.jctc.5b00838. Epub 2015 Nov 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验