Jiang Kun, Chen Guangxu, Wang Haotian
Rowland Institute, Harvard University.
Materials Science and Engineering, Stanford University.
J Vis Exp. 2018 Apr 10(134):57380. doi: 10.3791/57380.
This protocol presents both the synthesis method of the Ni single atom catalyst, and the electrochemical testing of its catalytic activity and selectivity in aqueous CO2 reduction. Different from traditional metal nanocrystals, the synthesis of metal single atoms involves a matrix material that can confine those single atoms and prevent them from aggregation. We report an electrospinning and thermal annealing method to prepare Ni single atoms dispersed and coordinated in a graphene shell, as active centers for CO2 reduction to CO. During the synthesis, N dopants play a critical role in generating graphene vacancies to trap Ni atoms. Aberration-corrected scanning transmission electron microscopy and three-dimensional atom probe tomography were employed to identify the single Ni atomic sites in graphene vacancies. Detailed setup of electrochemical CO2 reduction apparatus coupled with an on-line gas chromatography is also demonstrated. Compared to metallic Ni, Ni single atom catalyst exhibit dramatically improved CO2 reduction and suppressed H2 evolution side reaction.
本协议介绍了镍单原子催化剂的合成方法,以及其在水相二氧化碳还原中催化活性和选择性的电化学测试。与传统金属纳米晶体不同,金属单原子的合成涉及一种能够限制这些单原子并防止其聚集的基体材料。我们报道了一种静电纺丝和热退火方法,用于制备分散并配位在石墨烯壳层中的镍单原子,作为将二氧化碳还原为一氧化碳的活性中心。在合成过程中,氮掺杂剂在产生石墨烯空位以捕获镍原子方面起着关键作用。采用像差校正扫描透射电子显微镜和三维原子探针断层扫描来识别石墨烯空位中的单个镍原子位点。还展示了与在线气相色谱联用的电化学二氧化碳还原装置的详细设置。与金属镍相比,镍单原子催化剂在二氧化碳还原方面表现出显著改善,同时抑制了析氢副反应。