Suppr超能文献

基于钴酞菁/碳纳米管杂化结构的高选择性和活性 CO 还原电催化剂。

Highly selective and active CO reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures.

机构信息

Department of Materials Science and Engineering, South University of Science and Technology of China, Shenzhen 518055, China.

Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.

出版信息

Nat Commun. 2017 Mar 8;8:14675. doi: 10.1038/ncomms14675.

Abstract

Electrochemical reduction of carbon dioxide with renewable energy is a sustainable way of producing carbon-neutral fuels. However, developing active, selective and stable electrocatalysts is challenging and entails material structure design and tailoring across a range of length scales. Here we report a cobalt-phthalocyanine-based high-performance carbon dioxide reduction electrocatalyst material developed with a combined nanoscale and molecular approach. On the nanoscale, cobalt phthalocyanine (CoPc) molecules are uniformly anchored on carbon nanotubes to afford substantially increased current density, improved selectivity for carbon monoxide, and enhanced durability. On the molecular level, the catalytic performance is further enhanced by introducing cyano groups to the CoPc molecule. The resulting hybrid catalyst exhibits >95% Faradaic efficiency for carbon monoxide production in a wide potential range and extraordinary catalytic activity with a current density of 15.0 mA cm and a turnover frequency of 4.1 s at the overpotential of 0.52 V in a near-neutral aqueous solution.

摘要

利用可再生能源电化学还原二氧化碳是生产碳中和燃料的一种可持续方法。然而,开发活性、选择性和稳定的电催化剂具有挑战性,需要对一系列长度尺度的材料结构进行设计和剪裁。在这里,我们报告了一种基于钴酞菁的高性能二氧化碳还原电催化剂材料,该材料采用了纳米尺度和分子尺度相结合的方法。在纳米尺度上,钴酞菁(CoPc)分子均匀锚定在碳纳米管上,从而大大提高了电流密度,提高了一氧化碳的选择性,并增强了耐久性。在分子水平上,通过向 CoPc 分子中引入氰基进一步增强了催化性能。所得的混合催化剂在很宽的电位范围内对一氧化碳的生成表现出超过 95%的法拉第效率,并且在近中性水溶液中,在 0.52 V 的过电势下,具有 15.0 mA cm 的电流密度和 4.1 s 的周转频率的非凡催化活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7b9/5344970/404056266813/ncomms14675-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验