Suppr超能文献

研究持续高频发射能量学的模型。

A model for studying the energetics of sustained high frequency firing.

机构信息

Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.

Center for Neural Dynamics, University of Ottawa, Ottawa, Ontario, Canada.

出版信息

PLoS One. 2018 Apr 30;13(4):e0196508. doi: 10.1371/journal.pone.0196508. eCollection 2018.

Abstract

Regulating membrane potential and synaptic function contributes significantly to the energetic costs of brain signaling, but the relative costs of action potentials (APs) and synaptic transmission during high-frequency firing are unknown. The continuous high-frequency (200-600Hz) electric organ discharge (EOD) of Eigenmannia, a weakly electric fish, underlies its electrosensing and communication. EODs reflect APs fired by the muscle-derived electrocytes of the electric organ (EO). Cholinergic synapses at the excitable posterior membranes of the elongated electrocytes control AP frequency. Based on whole-fish O2 consumption, ATP demand per EOD-linked AP increases exponentially with AP frequency. Continual EOD-AP generation implies first, that ion homeostatic processes reliably counteract any dissipation of posterior membrane ENa and EK and second that high frequency synaptic activation is reliably supported. Both of these processes require energy. To facilitate an exploration of the expected energy demands of each, we modify a previous excitability model and include synaptic currents able to drive APs at frequencies as high as 600 Hz. Synaptic stimuli are modeled as pulsatile cation conductance changes, with or without a small (sustained) background conductance. Over the full species range of EOD frequencies (200-600 Hz) we calculate frequency-dependent "Na+-entry budgets" for an electrocyte AP as a surrogate for required 3Na+/2K+-ATPase activity. We find that the cost per AP of maintaining constant-amplitude APs increases nonlinearly with frequency, whereas the cost per AP for synaptic input current is essentially constant. This predicts that Na+ channel density should correlate positively with EOD frequency, whereas AChR density should be the same across fish. Importantly, calculated costs (inferred from Na+-entry through Nav and ACh channels) for electrocyte APs as frequencies rise are much less than expected from published whole-fish EOD-linked O2 consumption. For APs at increasingly high frequencies, we suggest that EOD-related costs external to electrocytes (including packaging of synaptic transmitter) substantially exceed the direct cost of electrocyte ion homeostasis.

摘要

调节膜电位和突触功能对大脑信号传递的能量消耗有重要贡献,但高频放电时动作电位 (AP) 和突触传递的相对成本尚不清楚。电鳗(Eigenmannia)是一种弱电鱼,其持续的高频(200-600Hz)电器官放电 (EOD) 是其电感觉和通讯的基础。EOD 反映了电器官中肌肉衍生的电细胞产生的 AP。位于细长电细胞的可兴奋后膜上的胆碱能突触控制着 AP 的频率。基于整条鱼的 O2 消耗,与每个 EOD 相关的 AP 的 ATP 需求随 AP 频率呈指数增长。持续的 EOD-AP 产生意味着,首先,离子动态平衡过程可靠地抵消了后膜 ENa 和 EK 的任何耗散,其次,高频突触激活得到可靠支持。这两个过程都需要能量。为了方便探索每个过程的预期能量需求,我们修改了以前的兴奋性模型,并包括能够驱动高达 600Hz 的频率的突触电流。突触刺激被建模为脉冲阳离子电导变化,有无小(持续)背景电导。在电鳗 EOD 频率的全物种范围内(200-600Hz),我们计算了电细胞 AP 的频率依赖性“Na+ 进入预算”,作为所需 3Na+/2K+-ATPase 活性的替代物。我们发现,维持恒定幅度 AP 的每个 AP 的成本与频率呈非线性增加,而每个 AP 的突触输入电流成本基本保持不变。这表明 Na+ 通道密度应与 EOD 频率呈正相关,而 AChR 密度在鱼类之间应相同。重要的是,随着频率的升高,计算出的电细胞 AP 的成本(通过 Nav 和 ACh 通道的 Na+ 进入推断)远低于已发表的与整个鱼类 EOD 相关的 O2 消耗。对于越来越高的频率的 AP,我们认为与电鳗相关的 EOD 相关成本(包括突触递质的包装)大大超过了电细胞离子动态平衡的直接成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e471/5927439/c8dc582a1827/pone.0196508.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验