Ban Yue, Smith Benjamin E, Markham Michael R
Department of Biology, The University of Oklahoma, Norman, Oklahoma; Cellular & Behavioral Neurobiology Graduate Program, The University of Oklahoma, Norman, Oklahoma; and
Samuel Roberts Noble Microscopy Laboratory, The University of Oklahoma, Norman, Oklahoma.
J Neurophysiol. 2015 Jul;114(1):520-30. doi: 10.1152/jn.00475.2014. Epub 2015 Apr 29.
The bioelectrical properties and resulting metabolic demands of electrogenic cells are determined by their morphology and the subcellular localization of ion channels. The electric organ cells (electrocytes) of the electric fish Eigenmannia virescens generate action potentials (APs) with Na(+) currents >10 μA and repolarize the AP with Na(+)-activated K(+) (KNa) channels. To better understand the role of morphology and ion channel localization in determining the metabolic cost of electrocyte APs, we used two-photon three-dimensional imaging to determine the fine cellular morphology and immunohistochemistry to localize the electrocytes' ion channels, ionotropic receptors, and Na(+)-K(+)-ATPases. We found that electrocytes are highly polarized cells ∼ 1.5 mm in anterior-posterior length and ∼ 0.6 mm in diameter, containing ∼ 30,000 nuclei along the cell periphery. The cell's innervated posterior region is deeply invaginated and vascularized with complex ultrastructural features, whereas the anterior region is relatively smooth. Cholinergic receptors and Na(+) channels are restricted to the innervated posterior region, whereas inward rectifier K(+) channels and the KNa channels that terminate the electrocyte AP are localized to the anterior region, separated by >1 mm from the only sources of Na(+) influx. In other systems, submicrometer spatial coupling of Na(+) and KNa channels is necessary for KNa channel activation. However, our computational simulations showed that KNa channels at a great distance from Na(+) influx can still terminate the AP, suggesting that KNa channels can be activated by distant sources of Na(+) influx and overturning a long-standing assumption that AP-generating ion channels are restricted to the electrocyte's posterior face.
电生细胞的生物电特性及其产生的代谢需求由其形态和离子通道的亚细胞定位决定。电鱼Eigenmannia virescens的电器官细胞(电细胞)产生钠电流>10μA的动作电位(AP),并通过钠激活钾(KNa)通道使AP复极化。为了更好地理解形态和离子通道定位在决定电细胞AP代谢成本中的作用,我们使用双光子三维成像来确定精细的细胞形态,并通过免疫组织化学来定位电细胞的离子通道、离子型受体和钠钾ATP酶。我们发现电细胞是高度极化的细胞,前后长度约为1.5毫米,直径约为0.6毫米,沿细胞周边含有约30,000个细胞核。细胞的受神经支配的后部区域深陷并血管化,具有复杂的超微结构特征,而前部区域相对光滑。胆碱能受体和钠通道局限于受神经支配的后部区域,而内向整流钾通道和终止电细胞AP的KNa通道则定位于前部区域,与唯一的钠流入源相距>1毫米。在其他系统中,钠通道和KNa通道的亚微米空间偶联对于KNa通道的激活是必要的。然而,我们的计算模拟表明,与钠流入距离很远的KNa通道仍然可以终止AP,这表明KNa通道可以被远处的钠流入源激活,推翻了一个长期以来的假设,即产生AP的离子通道局限于电细胞的后表面。