Suppr超能文献

阳离子依赖性光诱导卤化物分离在杂化有机-无机钙钛矿中。

Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites.

机构信息

Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.

Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.

出版信息

Nano Lett. 2018 Jun 13;18(6):3473-3480. doi: 10.1021/acs.nanolett.8b00541. Epub 2018 May 4.

Abstract

Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH)CsPb-halide (FACsPb-) and CHNHPb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.

摘要

具有提高的功率转换效率、可忽略的迟滞以及在光照、湿度和热应力下改进的长期稳定性的混合阳离子金属卤化物钙钛矿,已成为用于光伏和光电应用的有前途的化合物。在这里,我们使用原位光致发光光谱和原位同步加速器 X 射线衍射(XRD)来阐明光诱导卤化物分相,以直接比较 CH(NH)CsPb-卤化物(FACsPb-)和 CHNHPb-卤化物(MAPb-)钙钛矿在光照下组成和相变化的演变,从而深入了解为什么 FACs-钙钛矿比 MA-钙钛矿不易发生卤化物分相。我们发现卤化物分相发生在这两种材料中。然而,分相过程中形成的富 I 域在 FACsPb-钙钛矿中积累应变,但在 MA-钙钛矿中很容易松弛。预计积累的应变能将起到稳定卤化物分相的作用,并且可以解释 FACs-卤化物中发生分相所需的 Br 组成阈值较高的原因。此外,我们发现尽管卤化物分相导致 MA-钙钛矿的高能光致发光发射猝灭,但从 FACs-钙钛矿中发射增强。这种行为表明由于分相过程和应变积累,FACs-钙钛矿中的非辐射复合中心减少。FACsPb-卤化物钙钛矿具有优异的固有材料特性,其光致发光量子产率可与 MA-钙钛矿相媲美。因为在不牺牲电子性能的情况下实现了更好的稳定性,这些组成是光伏应用的更好候选者,特别是作为串联电池中的宽带隙吸收器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验