Draguta Sergiu, Sharia Onise, Yoon Seog Joon, Brennan Michael C, Morozov Yurii V, Manser Joseph S, Kamat Prashant V, Schneider William F, Kuno Masaru
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
Nat Commun. 2017 Aug 4;8(1):200. doi: 10.1038/s41467-017-00284-2.
Mixed halide hybrid perovskites, CHNHPb(I Br ), represent good candidates for low-cost, high efficiency photovoltaic, and light-emitting devices. Their band gaps can be tuned from 1.6 to 2.3 eV, by changing the halide anion identity. Unfortunately, mixed halide perovskites undergo phase separation under illumination. This leads to iodide- and bromide-rich domains along with corresponding changes to the material's optical/electrical response. Here, using combined spectroscopic measurements and theoretical modeling, we quantitatively rationalize all microscopic processes that occur during phase separation. Our model suggests that the driving force behind phase separation is the bandgap reduction of iodide-rich phases. It additionally explains observed non-linear intensity dependencies, as well as self-limited growth of iodide-rich domains. Most importantly, our model reveals that mixed halide perovskites can be stabilized against phase separation by deliberately engineering carrier diffusion lengths and injected carrier densities.Mixed halide hybrid perovskites possess tunable band gaps, however, under illumination they undergo phase separation. Using spectroscopic measurements and theoretical modelling, Draguta and Sharia et al. quantitatively rationalize the microscopic processes that occur during phase separation.
混合卤化物杂化钙钛矿CHNHPb(I Br )是低成本、高效率光伏和发光器件的理想候选材料。通过改变卤化物阴离子的种类,其带隙可在1.6至2.3 eV之间调节。不幸的是,混合卤化物钙钛矿在光照下会发生相分离。这会导致形成富含碘化物和溴化物的区域,并相应改变材料的光学/电学响应。在此,我们结合光谱测量和理论建模,对相分离过程中发生的所有微观过程进行了定量分析。我们的模型表明,相分离背后的驱动力是富含碘化物相的带隙减小。它还解释了观察到的非线性强度依赖性以及富含碘化物区域的自限性生长。最重要的是,我们的模型表明,通过有意设计载流子扩散长度和注入载流子密度,可以使混合卤化物钙钛矿稳定,防止相分离。混合卤化物杂化钙钛矿具有可调节的带隙,然而,在光照下它们会发生相分离。Draguta和Sharia等人通过光谱测量和理论建模,对相分离过程中发生的微观过程进行了定量分析。