Brain Science Research Institute, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong Province, 250012, P.R. China.
Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong Province, 250012, P.R. China.
Oncogene. 2018 Aug;37(31):4239-4259. doi: 10.1038/s41388-018-0261-9. Epub 2018 May 1.
While immunosuppressive environments mediated by myeloid-derived suppressor cells (MDSCs) have been well documented in glioma patients, the mechanisms of MDSC development and activation have not been clearly defined. Here, we elucidated a role for glioma-derived exosomes (GDEs) in potentiating an MDSC pathway. We isolated normoxia-stimulated and hypoxia-stimulated GDEs and studied their MDSC induction abilities in vivo and in vitro. Analyses of spleen and bone marrow MDSC proportions (flow cytometry) and reactive oxygen species (ROS), arginase activity, nitric oxide (NO), T-cell proliferation and immunosuppressive cytokine (IL-10 and TGF-β, ELISA) levels were used to assess MDSC expansion and functional capacity. We also performed microRNA (miRNA) sequencing analysis of two types of GDEs to find miRNAs that potentially mediate the development and activation of MDSCs. GDE miRNA intracellular signaling in MDSCs was also studied. Hypoxia promoted the secretion of GDEs, and mouse MDSCs could uptake GDEs. Hypoxia-stimulated GDEs had a stronger ability to induce MDSCs than N-GDEs. The hypoxia-inducible expression of miR-10a and miR-21 in GDEs mediated GDE-induced MDSC expansion and activation by targeting RAR-related orphan receptor alpha (RORA) and phosphatase and tensin homolog (PTEN). Mice inoculated with miR-10a or miR-21 knockout glioma cells generated fewer MDSCs than those inoculated with normal glioma cells. These data elucidated a mechanism by which glioma cells influence the differentiation and activation of MDSCs via exosomes and demonstrated how local glioma hypoxia affects the entirety of tumor immune environments.
虽然髓源性抑制细胞 (MDSC) 介导的免疫抑制环境在神经胶质瘤患者中已有充分的记录,但 MDSC 的发展和激活机制尚未明确。在这里,我们阐明了神经胶质瘤衍生的外泌体 (GDE) 在增强 MDSC 途径中的作用。我们分离了常氧刺激和低氧刺激的 GDE,并在体内和体外研究了它们诱导 MDSC 的能力。通过流式细胞术分析脾脏和骨髓中 MDSC 的比例以及活性氧 (ROS)、精氨酸酶活性、一氧化氮 (NO)、T 细胞增殖和免疫抑制细胞因子 (IL-10 和 TGF-β,ELISA) 水平来评估 MDSC 的扩增和功能能力。我们还对两种类型的 GDE 进行了 microRNA (miRNA) 测序分析,以寻找可能介导 MDSC 发育和激活的 miRNA。还研究了 GDE 中 miRNA 的细胞内信号转导在 MDSC 中的作用。低氧促进 GDE 的分泌,并且小鼠 MDSC 可以摄取 GDE。与 N-GDE 相比,低氧刺激的 GDE 具有更强的诱导 MDSC 的能力。GDE 中 miR-10a 和 miR-21 的缺氧诱导表达通过靶向 RAR 相关孤儿受体α (RORA) 和磷酸酶和张力蛋白同源物 (PTEN) 介导 GDE 诱导的 MDSC 扩增和激活。接种 miR-10a 或 miR-21 敲除神经胶质瘤细胞的小鼠产生的 MDSC 比接种正常神经胶质瘤细胞的小鼠少。这些数据阐明了神经胶质瘤细胞通过外泌体影响 MDSC 分化和激活的机制,并表明局部神经胶质瘤低氧如何影响肿瘤免疫环境的整体。
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2021-8
Yale J Biol Med. 2025-6-30
Cancer Immunol Immunother. 2025-6-25
J Neuroimmune Pharmacol. 2025-4-29
Cell Mol Bioeng. 2016-12
Contemp Oncol (Pozn). 2016
Breast Cancer Res. 2016-9-8
Trends Immunol. 2016-3