Department of Chemistry , Rice University , Houston , Texas 77005 , United States.
Applied Physics Graduate Program , Rice University , Houston , Texas 77005 , United States.
Nano Lett. 2018 Jun 13;18(6):3494-3501. doi: 10.1021/acs.nanolett.8b00559. Epub 2018 May 7.
The study of acoustic vibrations in nanoparticles provides unique and unparalleled insight into their mechanical properties. Electron-beam lithography of nanostructures allows precise manipulation of their acoustic vibration frequencies through control of nanoscale morphology. However, the dissipation of acoustic vibrations in this important class of nanostructures has not yet been examined. Here we report, using single-particle ultrafast transient extinction spectroscopy, the intrinsic damping dynamics in lithographically fabricated plasmonic nanostructures. We find that in stark contrast to chemically synthesized, monocrystalline nanoparticles, acoustic energy dissipation in lithographically fabricated nanostructures is solely dominated by intrinsic damping. A quality factor of Q = 11.3 ± 2.5 is observed for all 147 nanostructures, regardless of size, geometry, frequency, surface adhesion, and mode. This result indicates that the complex Young's modulus of this material is independent of frequency with its imaginary component being approximately 11 times smaller than its real part. Substrate-mediated acoustic vibration damping is strongly suppressed, despite strong binding between the glass substrate and Au nanostructures. We anticipate that these results, characterizing the optomechanical properties of lithographically fabricated metal nanostructures, will help inform their design for applications such as photoacoustic imaging agents, high-frequency resonators, and ultrafast optical switches.
纳米颗粒中声学振动的研究为其力学性质提供了独特且无与伦比的见解。通过控制纳米级形貌,电子束光刻技术可对纳米结构的声波振动频率进行精确操控。然而,这一重要类别的纳米结构中的声波振动耗散尚未得到研究。在此,我们通过单粒子超快瞬态消光光谱学,报告了光刻法制备的等离子体纳米结构中的固有阻尼动力学。我们发现,与化学合成的单晶纳米颗粒形成鲜明对比,光刻法制备的纳米结构中的声能耗散仅由固有阻尼主导。在所有 147 个纳米结构中,均观察到 Q 值为 11.3 ± 2.5,与尺寸、几何形状、频率、表面附着力和模式无关。这一结果表明,该材料的复杂杨氏模量与频率无关,其虚部大约比实部小 11 倍。尽管玻璃基底与 Au 纳米结构之间存在强烈的结合,但基底介导的声振动耗散被强烈抑制。我们预计,这些对光刻法制备的金属纳米结构的光机械特性的描述结果,将有助于指导其在光声成像剂、高频谐振器和超快速光开关等应用中的设计。