The Blackett Laboratory, Department of Physics , Imperial College London , London SW7 2AZ , United Kingdom.
Department of Physics and Randall Division of Cell and Molecular Biophysics , King's College London , London SE1 1UL , United Kingdom.
Nano Lett. 2018 Jun 13;18(6):3400-3406. doi: 10.1021/acs.nanolett.8b00302. Epub 2018 May 4.
The inhibition of radiative losses in dark plasmon modes allows storing electromagnetic energy more efficiently than in far-field excitable bright-plasmon modes. As such, processes benefiting from the enhanced absorption of light in plasmonic materials could also take profit of dark plasmon modes to boost and control nanoscale energy collection, storage, and transfer. We experimentally probe this process by imaging with nanoscale precision the hot-electron driven desorption of thiolated molecules from the surface of gold Fano nanostructures, investigating the effect of wavelength and polarization of the incident light. Spatially resolved absorption maps allow us to show the contribution of each element of the nanoantenna in the hot-electron driven process and their interplay in exciting a dark plasmon mode. Plasmon-mode engineering allows control of nanoscale reactivity and offers a route to further enhance and manipulate hot-electron driven chemical reactions and energy-conversion and transfer at the nanoscale.
暗等离子体模式的辐射损耗抑制作用使得电磁能的存储比远场激发的亮等离子体模式更有效。因此,受益于等离子体材料中光吸收增强的过程也可以利用暗等离子体模式来促进和控制纳米级能量收集、存储和转移。我们通过纳米级精度的成像实验探测了这个过程,即从金 Fano 纳米结构表面热电子驱动硫醇分子的解吸,研究了入射光的波长和偏振的影响。空间分辨吸收图使我们能够展示纳米天线各个元件在热电子驱动过程中的贡献及其在激发暗等离子体模式方面的相互作用。等离子体模式工程可以控制纳米级反应性,并提供了一种进一步增强和操纵热电子驱动化学反应以及纳米级能量转换和转移的途径。