Chair in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany.
Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil.
Chem Rev. 2022 Oct 12;122(19):15082-15176. doi: 10.1021/acs.chemrev.2c00078. Epub 2022 Jun 21.
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
具有设计光学功能的纳米结构表面,如超表面,可以在纳米尺度上高效地收集光,增强各种材料组合的光物质相互作用。在这些人工材料中利用光驱动的物质激发开辟了在纳米尺度上转换和管理能量的新维度。在这篇综述中,我们概述了光学超表面在将入射光子的能量转换为频移光子、声子和高能电荷载流子方面的影响、机会、应用和挑战。有无数的机会等待着转换能量的利用。在这里,我们从基本的纳米观点到应用,涵盖了最相关的方面。