文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有 pH 响应和聚乙二醇可分离特性的智能聚合物纳米粒,用于共递送紫杉醇和生存素 siRNA 以增强抗肿瘤效果。

Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes.

机构信息

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Department of Diagnostic Radiology 2, Yanbian University Hospital, Yanji, Jilin, China.

出版信息

Int J Nanomedicine. 2018 Apr 20;13:2405-2426. doi: 10.2147/IJN.S161426. eCollection 2018.


DOI:10.2147/IJN.S161426
PMID:29719390
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5916383/
Abstract

BACKGROUND: The co-delivery of chemotherapeutic agents and small interfering RNA (siRNA) within one cargo can enhance the anticancer outcomes through its synergistic therapeutic effects. MATERIALS AND METHODS: We prepared smart polymeric nanoparticles (NPs) with pH-responsive and poly(ethylene glycol) (PEG)-detachable properties to systemically co-deliver paclitaxel (PTX) and siRNA against survivin gene for lung cancer therapy. The cationic polyethyleneimine-block-polylactic acid (PEI-PLA) was first synthesized and characterized, with good biocompatibility. PTX was encapsulated into the hydrophobic core of the PEI-PLA polymers by dialysis, and then the survivin siRNA was loaded onto the PTX-loaded NPs (PEI-PLA/PTX) through electrostatic interaction between siRNA and PEI block. Finally, the negatively charged poly(ethylene glycol)-block-poly(L-aspartic acid sodium salt) (PEG-PAsp) was coated onto the surface of NPs by electrostatic interaction to form final smart polymeric NPs with mean particle size of 82.4 nm and zeta potential of 4.1 mV. After uptake of NPs by tumor cells, the PEG-PAsp segments became electrically neutral owing to the lower endosome pH and consequently detached from the smart NPs. This process allowed endosomal escape of the NPs through the proton-sponge effect of the exposed PEI moiety. RESULTS: The resulting NPs achieved drug loading of 6.04 wt% and exhibited good dispersibility within 24 h in 10% fetal bovine serum (FBS). At pH 5.5, the NPs presented better drug release and cellular uptake than at pH 7.4. The NPs with survivin siRNA effectively knocked down the expression of survivin mRNA and protein owing to enhanced cell uptake of NPs. Cell counting kit-8 (CCK-8) assay showed that the NPs presented low systemic toxicity and improved antiproliferation effect of PTX on A549 cells. Moreover, in vivo studies demonstrated that accumulated NPs in the tumor site were capable of inhibiting the tumor growth and extending the survival rate of the mice by silencing the survivin gene and delivering PTX into tumor cells simultaneously. CONCLUSION: These results indicate that the prepared nano-vectors could be a promising co-delivery system for novel chemo/gene combination therapy.

摘要

背景:在一个载体中同时递送化疗药物和小干扰 RNA(siRNA)可以通过协同治疗效果增强抗癌效果。

材料和方法:我们制备了具有 pH 响应和聚乙二醇(PEG)可分离特性的智能聚合物纳米粒子(NPs),用于系统地共递送紫杉醇(PTX)和针对生存素基因的 siRNA 用于肺癌治疗。首先合成并表征阳离子聚乙烯亚胺-聚乳酸(PEI-PLA),具有良好的生物相容性。PTX 通过透析被包封到 PEI-PLA 聚合物的疏水性内核中,然后通过 siRNA 与 PEI 嵌段之间的静电相互作用将生存素 siRNA 装载到负载 PTX 的 NPs(PEI-PLA/PTX)上。最后,通过静电相互作用将带负电荷的聚乙二醇-聚(L-天冬氨酸钠盐)(PEG-PAsp)涂覆到 NPs 的表面上,形成最终的智能聚合物 NPs,平均粒径为 82.4nm,zeta 电位为 4.1mV。当肿瘤细胞摄取 NPs 后,由于内涵体 pH 值较低,PEG-PAsp 段变得电中性,因此从智能 NPs 上脱离。这个过程通过暴露的 PEI 部分的质子海绵效应允许 NPs 逃离内涵体。

结果:所得 NPs 的药物载量为 6.04wt%,在 10%胎牛血清(FBS)中 24 小时内表现出良好的分散性。在 pH5.5 下,与 pH7.4 相比,NPs 具有更好的药物释放和细胞摄取。带有生存素 siRNA 的 NPs 由于 NPs 的细胞摄取增强,有效地降低了生存素 mRNA 和蛋白的表达。细胞计数试剂盒-8(CCK-8)试验表明,NPs 具有较低的全身毒性,并提高了 PTX 对 A549 细胞的增殖抑制作用。此外,体内研究表明,通过沉默生存素基因和同时将 PTX 递送至肿瘤细胞,在肿瘤部位积累的 NPs 能够抑制肿瘤生长并延长小鼠的存活率。

结论:这些结果表明,所制备的纳米载体可能是一种有前途的新型化疗/基因联合治疗的共递药系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/ef9a425598ed/ijn-13-2405Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/82ce642c73cb/ijn-13-2405Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/2534a7a834e5/ijn-13-2405Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/a1530f79181d/ijn-13-2405Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/b3514379d1ac/ijn-13-2405Fig4a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/c1f85e8de538/ijn-13-2405Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/9543e609e9b5/ijn-13-2405Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/10a6cb3561d6/ijn-13-2405Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/e0379050a65d/ijn-13-2405Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/d2a1cf067097/ijn-13-2405Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/ef9a425598ed/ijn-13-2405Fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/82ce642c73cb/ijn-13-2405Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/2534a7a834e5/ijn-13-2405Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/a1530f79181d/ijn-13-2405Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/b3514379d1ac/ijn-13-2405Fig4a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/c1f85e8de538/ijn-13-2405Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/9543e609e9b5/ijn-13-2405Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/10a6cb3561d6/ijn-13-2405Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/e0379050a65d/ijn-13-2405Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/d2a1cf067097/ijn-13-2405Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5a5/5916383/ef9a425598ed/ijn-13-2405Fig10.jpg

相似文献

[1]
Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes.

Int J Nanomedicine. 2018-4-20

[2]
Smart Polymeric Nanoparticles with pH-Responsive and PEG-Detachable Properties (II): Co-Delivery of Paclitaxel and VEGF siRNA for Synergistic Breast Cancer Therapy in Mice.

Int J Nanomedicine. 2021

[3]
Bioinspired tumor-homing nanoplatform for co-delivery of paclitaxel and siRNA-E7 to HPV-related cervical malignancies for synergistic therapy.

Theranostics. 2020

[4]
Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

Oncotarget. 2015-12-8

[5]
pH and redox dual-responsive copolymer micelles with surface charge reversal for co-delivery of all--retinoic acid and paclitaxel for cancer combination chemotherapy.

Int J Nanomedicine. 2018-10-16

[6]
Stimuli-responsive magnetic silica-poly-lactic-co-glycolic acid hybrid nanoparticles for targeted cancer chemo-immunotherapy.

Drug Deliv Transl Res. 2024-10

[7]
PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells.

Int J Nanomedicine. 2012-8-3

[8]
Low density lipoprotein mimic nanoparticles composed of amphipathic hybrid peptides and lipids for tumor-targeted delivery of paclitaxel.

Int J Nanomedicine. 2019-9-11

[9]
Synthesis and characterization of FeO-PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA delivery system.

Hum Exp Toxicol. 2017-3

[10]
Radioluminescent nanoparticles for radiation-controlled release of drugs.

J Control Release. 2019-4-23

引用本文的文献

[1]
Reconfigurable Nucleic Acid Nanoparticles with Therapeutic RNAi Responses to Intracellular Disease Markers.

Adv Funct Mater. 2025-7-31

[2]
Emerging Trends in the Application of Nanosuspension-Based Biomaterials for Anticancer Drug Delivery.

Int J Nanomedicine. 2025-7-1

[3]
Glioma stem cells: drivers of tumor progression and recurrence.

Stem Cell Res Ther. 2025-6-7

[4]
Polymeric nanocarriers for therapeutic gene delivery.

Asian J Pharm Sci. 2025-2

[5]
Targeted Nanotherapy by Vinblastine-Loaded Chitosan-Coated PLA Nanoparticles to Improve the Chemotherapy via Reactive Oxygen Species to Hamper Hepatocellular Carcinoma.

ACS Omega. 2024-12-20

[6]
Preparation and effects of functionalized liposomes targeting breast cancer tumors using chemotherapy, phototherapy, and immunotherapy.

J Nanobiotechnology. 2024-9-12

[7]
Current advance of nanotechnology in diagnosis and treatment for malignant tumors.

Signal Transduct Target Ther. 2024-8-12

[8]
Fabrication of magnetic niosomal platform for delivery of resveratrol: potential anticancer activity against human pancreatic cancer Capan-1 cell.

Cancer Cell Int. 2024-1-29

[9]
Exploring the outer limits of polyplexes.

Biochem Biophys Res Commun. 2023-10-20

[10]
Albumin and functionalized albumin nanoparticles: production strategies, characterization, and target indications.

Asian Biomed (Res Rev News). 2020-12-31

本文引用的文献

[1]
An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome.

Acta Biomater. 2016-10-15

[2]
Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy.

Expert Opin Drug Deliv. 2017-1

[3]
MicroRNA-mediated epigenetic targeting of Survivin significantly enhances the antitumor activity of paclitaxel against non-small cell lung cancer.

Oncotarget. 2016-6-21

[4]
Nanocarrier-based co-delivery of small molecules and siRNA/miRNA for treatment of cancer.

Ther Deliv. 2016

[5]
Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers.

Int J Nanomedicine. 2016-2-22

[6]
A theranostic micelleplex co-delivering SN-38 and VEGF siRNA for colorectal cancer therapy.

Biomaterials. 2016-4

[7]
Recent advances of cocktail chemotherapy by combination drug delivery systems.

Adv Drug Deliv Rev. 2016-3-1

[8]
siRNA Delivery by Stimuli-Sensitive Nanocarriers.

Curr Pharm Des. 2015

[9]
Intracellular delivery of nanocarriers and targeting to subcellular organelles.

Expert Opin Drug Deliv. 2016

[10]
Tumor-targeting, pH-sensitive nanoparticles for docetaxel delivery to drug-resistant cancer cells.

Int J Nanomedicine. 2015-8-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索