Gonthier Jerome F, Thirman Jonathan, Head-Gordon Martin
Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California Berkeley, California, 94720 USA; Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, California, 94720 USA.
Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL 60439 USA.
Chimia (Aarau). 2018 Apr 25;72(4):193-198. doi: 10.2533/chimia.2018.193.
Non-covalent interactions play a primordial role in chemistry. Beyond their quantification, the detailed understanding of their physical processes is necessary to rationalize chemical trends and improve designs of chemical systems. Energy decomposition analyses allow detailed insight into non-covalent interactions by extracting electrostatics, Pauli repulsion, polarization, dispersion and charge transfer components from interaction energies. Recent work has demonstrated that electronic correlation influenced significantly all of these energy components, whereas previous decompositions only partitioned correlation between dispersion and charge transfer. The MP2 energy decomposition analysis with Absolutely Localized Molecular Orbitals (MP2 ALMO-EDA) takes these results fully into account and offers a correlation correction for each extracted component. A recent detailed investigation of the CCSD dispersion energy showed that a small number of virtual orbitals is sufficient to describe dispersion interactions accurately in the long-range, which potentially offers a basis-set independent definition of dispersion. Finally, we present an application of MP2 ALMO-EDA to a series of unusual halogen bonding complexes where charge transfer dominates over the electrostatic σ-hole interaction.
非共价相互作用在化学中起着至关重要的作用。除了对其进行量化外,详细了解其物理过程对于解释化学趋势和改进化学系统的设计是必要的。能量分解分析通过从相互作用能中提取静电、泡利排斥、极化、色散和电荷转移成分,从而深入洞察非共价相互作用。最近的研究表明,电子相关对所有这些能量成分都有显著影响,而之前的分解仅将相关分配到色散和电荷转移之间。采用绝对定域分子轨道的MP2能量分解分析(MP2 ALMO - EDA)充分考虑了这些结果,并对每个提取的成分提供了相关校正。最近对CCSD色散能的详细研究表明,少量的虚轨道足以在长程范围内准确描述色散相互作用,这可能为色散提供一个与基组无关的定义。最后,我们展示了MP2 ALMO - EDA在一系列不寻常的卤键配合物中的应用,其中电荷转移主导了静电σ - 空穴相互作用。