Suppr超能文献

涉及π系统、氮氧自由基和卡宾的卤键性质:电荷转移重要性的一个亮点。

Nature of halogen bonding involving π-systems, nitroxide radicals and carbenes: a highlight of the importance of charge transfer.

机构信息

NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456, Singapore.

Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis North, Singapore 138632, Singapore.

出版信息

Phys Chem Chem Phys. 2018 Nov 7;20(41):26463-26478. doi: 10.1039/c8cp04075c. Epub 2018 Oct 11.

Abstract

The recently developed adiabatic absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA) has proven to be useful in determining the effects of different energy components on the geometries of complexes bound by intermolecular interactions. The authors have applied it to systems such as the water dimer, water-ion complexes, metallocenes and lone-pair type halogen-bonded (XB) dimers. In this study, we have extended the second-generation ALMO-EDA method to 40 different XB complexes by benchmarking against its classical counterpart and symmetry-adapted perturbation theory (SAPT). In addition, we have examined the nature of halogen bonding involving less studied XB acceptors, namely π-systems, radicals and carbenes, using the adiabatic ALMO-EDA analyses, particularly to shed light on how each energy component affects the geometries of the XB complexes. Our results show that the second-generation ALMO-EDA predicts a higher electrostatic energy contribution in all XB complexes compared to SAPT and classical ALMO-EDA schemes. On the other hand, when comparing across different XB acceptors, all three partition schemes produced the same qualitative finding. The adiabatic ALMO-EDA analyses indicate that while the inclusion of a charge transfer contribution is important in achieving accurate XB bond lengths and interaction energies, as well as recovering the binding site specificity of XB involving benzene and naphthalene acceptors, it is sufficient to obtain the linearity of the XB complexes in the frozen approximation.

摘要

最近开发的绝热完全局域分子轨道能量分解分析(ALMO-EDA)已被证明在确定不同能量成分对通过分子间相互作用结合的配合物几何形状的影响方面非常有用。作者已将其应用于水二聚体、水-离子配合物、茂金属和孤对型卤键(XB)二聚体等系统。在这项研究中,我们通过与经典对应物和对称自适应微扰理论(SAPT)进行基准测试,将第二代 ALMO-EDA 方法扩展到 40 个不同的 XB 配合物。此外,我们使用绝热 ALMO-EDA 分析研究了涉及研究较少的 XB 受体(即π系统、自由基和卡宾)的卤键性质,特别是为了阐明每个能量成分如何影响 XB 配合物的几何形状。我们的结果表明,与 SAPT 和经典 ALMO-EDA 方案相比,第二代 ALMO-EDA 预测所有 XB 配合物中的静电能贡献更高。另一方面,当比较不同的 XB 受体时,所有三种划分方案都得出了相同的定性发现。绝热 ALMO-EDA 分析表明,虽然包括电荷转移贡献对于获得准确的 XB 键长和相互作用能以及恢复涉及苯和萘受体的 XB 的结合位点特异性很重要,但足以获得在冻结近似下 XB 配合物的线性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验