Department of Physiology, Hallym University, College of Medicine, Chuncheon, 24252, South Korea.
Department of Neurology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA, 94121, USA.
Sci Rep. 2018 May 2;8(1):6903. doi: 10.1038/s41598-018-25191-4.
Several studies have demonstrated that excitatory amino acid carrier-1 (EAAC1) gene deletion exacerbates hippocampal and cortical neuronal death after ischemia. However, presently there are no studies investigating the role of EAAC1 in hippocampal neurogenesis. In this study, we tested the hypothesis that reduced cysteine transport into neurons by EAAC1 knockout negatively affects adult hippocampal neurogenesis under physiological or pathological states. This study used young mice (aged 3-5 months) and aged mice (aged 11-15 months) of either the wild-type (WT) or EAAC1 genotype. Ischemia was induced through the occlusion of bilateral common carotid arteries for 30 minutes. Histological analysis was performed at 7 or 30 days after ischemia. We found that both young and aged mice with loss of the EAAC1 displayed unaltered cell proliferation and neuronal differentiation, as compared to age-matched WT mice under ischemia-free conditions. However, neurons generated from EAAC1 mice showed poor survival outcomes in both young and aged mice. In addition, deletion of EAAC1 reduced the overall level of neurogenesis, including cell proliferation, differentiation, and survival after ischemia. The present study demonstrates that EAAC1 is important for the survival of newly generated neurons in the adult brain under physiological and pathological conditions. Therefore, this study suggests that EAAC1 plays an essential role in modulating hippocampal neurogenesis.
已有多项研究表明,兴奋性氨基酸载体-1(EAAC1)基因缺失可加重缺血后海马和皮质神经元死亡。然而,目前尚无研究探讨 EAAC1 在海马神经发生中的作用。在这项研究中,我们假设 EAAC1 敲除会减少神经元中半胱氨酸的转运,从而对生理或病理状态下的成年海马神经发生产生负面影响。本研究使用了年轻(3-5 月龄)和年老(11-15 月龄)的野生型(WT)或 EAAC1 基因型的小鼠。通过双侧颈总动脉阻塞 30 分钟来诱导缺血。在缺血后 7 或 30 天进行组织学分析。我们发现,与同龄 WT 小鼠相比,在无缺血条件下,EAAC1 缺失的年轻和年老小鼠的细胞增殖和神经元分化均未改变。然而,来自 EAAC1 小鼠的神经元在年轻和年老小鼠中的存活情况较差。此外,EAAC1 的缺失减少了缺血后神经发生的整体水平,包括细胞增殖、分化和存活。本研究表明,EAAC1 对于生理和病理条件下成年大脑中新生成的神经元的存活是重要的。因此,本研究提示 EAAC1 在调节海马神经发生中发挥重要作用。