Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
Department of Physics, University of Oregon, Eugene, OR, USA.
Neurogastroenterol Motil. 2018 Sep;30(9):e13351. doi: 10.1111/nmo.13351. Epub 2018 May 2.
Normal gut function requires rhythmic and coordinated movements that are affected by developmental processes, physical and chemical stimuli, and many debilitating diseases. The imaging and characterization of gut motility, especially regarding periodic, propagative contractions driving material transport, are therefore critical goals. Previous image analysis approaches have successfully extracted properties related to the temporal frequency of motility modes, but robust measures of contraction magnitude, especially from in vivo image data, remain challenging to obtain.
We developed a new image analysis method based on image velocimetry and spectral analysis that reveals temporal characteristics such as frequency and wave propagation speed, while also providing quantitative measures of the amplitude of gut motion.
We validate this approach using several challenges to larval zebrafish, imaged with differential interference contrast microscopy. Both acetylcholine exposure and feeding increase frequency and amplitude of motility. Larvae lacking enteric nervous system gut innervation show the same average motility frequency, but reduced and less variable amplitude compared to wild types.
CONCLUSIONS & INFERENCES: Our image analysis approach enables insights into gut dynamics in a wide variety of developmental and physiological contexts and can also be extended to analyze other types of cell movements.
正常的肠道功能需要有节奏且协调的运动,这些运动受到发育过程、物理和化学刺激以及许多使人衰弱的疾病的影响。因此,对肠道动力进行成像和特征描述,尤其是对推动物质运输的周期性、传播性收缩,是至关重要的目标。以前的图像分析方法已经成功地提取了与运动模式的时间频率相关的特性,但要获得收缩幅度的稳健度量,特别是来自体内图像数据,仍然具有挑战性。
我们开发了一种新的基于图像速度测量和光谱分析的图像分析方法,该方法揭示了时间特征,如频率和波传播速度,同时还提供了肠道运动幅度的定量测量。
我们使用微分干涉对比显微镜对幼虫斑马鱼进行成像,通过几种挑战验证了这种方法。乙酰胆碱暴露和进食都会增加运动的频率和幅度。缺乏肠神经系统肠道神经支配的幼虫显示出相同的平均运动频率,但与野生型相比,幅度减小且变化较小。
我们的图像分析方法能够深入了解各种发育和生理背景下的肠道动力学,也可以扩展到分析其他类型的细胞运动。