Suppr超能文献

影像流速测定和光谱分析可实现对斑马鱼幼鱼肠道蠕动的定量特征描述。

Image velocimetry and spectral analysis enable quantitative characterization of larval zebrafish gut motility.

机构信息

Institute of Neuroscience, University of Oregon, Eugene, OR, USA.

Department of Physics, University of Oregon, Eugene, OR, USA.

出版信息

Neurogastroenterol Motil. 2018 Sep;30(9):e13351. doi: 10.1111/nmo.13351. Epub 2018 May 2.

Abstract

BACKGROUND

Normal gut function requires rhythmic and coordinated movements that are affected by developmental processes, physical and chemical stimuli, and many debilitating diseases. The imaging and characterization of gut motility, especially regarding periodic, propagative contractions driving material transport, are therefore critical goals. Previous image analysis approaches have successfully extracted properties related to the temporal frequency of motility modes, but robust measures of contraction magnitude, especially from in vivo image data, remain challenging to obtain.

METHODS

We developed a new image analysis method based on image velocimetry and spectral analysis that reveals temporal characteristics such as frequency and wave propagation speed, while also providing quantitative measures of the amplitude of gut motion.

KEY RESULTS

We validate this approach using several challenges to larval zebrafish, imaged with differential interference contrast microscopy. Both acetylcholine exposure and feeding increase frequency and amplitude of motility. Larvae lacking enteric nervous system gut innervation show the same average motility frequency, but reduced and less variable amplitude compared to wild types.

CONCLUSIONS & INFERENCES: Our image analysis approach enables insights into gut dynamics in a wide variety of developmental and physiological contexts and can also be extended to analyze other types of cell movements.

摘要

背景

正常的肠道功能需要有节奏且协调的运动,这些运动受到发育过程、物理和化学刺激以及许多使人衰弱的疾病的影响。因此,对肠道动力进行成像和特征描述,尤其是对推动物质运输的周期性、传播性收缩,是至关重要的目标。以前的图像分析方法已经成功地提取了与运动模式的时间频率相关的特性,但要获得收缩幅度的稳健度量,特别是来自体内图像数据,仍然具有挑战性。

方法

我们开发了一种新的基于图像速度测量和光谱分析的图像分析方法,该方法揭示了时间特征,如频率和波传播速度,同时还提供了肠道运动幅度的定量测量。

主要结果

我们使用微分干涉对比显微镜对幼虫斑马鱼进行成像,通过几种挑战验证了这种方法。乙酰胆碱暴露和进食都会增加运动的频率和幅度。缺乏肠神经系统肠道神经支配的幼虫显示出相同的平均运动频率,但与野生型相比,幅度减小且变化较小。

结论和推论

我们的图像分析方法能够深入了解各种发育和生理背景下的肠道动力学,也可以扩展到分析其他类型的细胞运动。

相似文献

1
Image velocimetry and spectral analysis enable quantitative characterization of larval zebrafish gut motility.
Neurogastroenterol Motil. 2018 Sep;30(9):e13351. doi: 10.1111/nmo.13351. Epub 2018 May 2.
2
Embryogenesis of the peristaltic reflex.
J Physiol. 2019 May;597(10):2785-2801. doi: 10.1113/JP277746. Epub 2019 Apr 21.
3
Analysis of gastrointestinal physiology using a novel intestinal transit assay in zebrafish.
Neurogastroenterol Motil. 2009 Mar;21(3):304-12. doi: 10.1111/j.1365-2982.2008.01234.x. Epub 2008 Dec 31.
4
Ontogeny of the gut motility control system in zebrafish Danio rerio embryos and larvae.
J Exp Biol. 2004 Nov;207(Pt 23):4085-94. doi: 10.1242/jeb.01260.
5
Improved Imaging of Zebrafish Motility.
Neurogastroenterol Motil. 2018 Sep;30(9):e13435. doi: 10.1111/nmo.13435.
6
Contrast-Enhanced Magnetic Resonance Imaging of Gastric Emptying and Motility in Rats.
IEEE Trans Biomed Eng. 2017 Nov;64(11):2546-2554. doi: 10.1109/TBME.2017.2737559.
8
Ontogeny of excitatory and inhibitory control of gastrointestinal motility in the African clawed frog, Xenopus laevis.
Am J Physiol Regul Integr Comp Physiol. 2006 Oct;291(4):R1138-44. doi: 10.1152/ajpregu.00107.2006. Epub 2006 May 18.
10
Host Gut Motility Promotes Competitive Exclusion within a Model Intestinal Microbiota.
PLoS Biol. 2016 Jul 26;14(7):e1002517. doi: 10.1371/journal.pbio.1002517. eCollection 2016 Jul.

引用本文的文献

1
Going with the Flow: Sensorimotor Integration Along the Zebrafish GI Tract.
Cells. 2025 Jul 30;14(15):1170. doi: 10.3390/cells14151170.
2
Interactions between CNS regulation and serotonergic modulation of crayfish hindgut motility.
R Soc Open Sci. 2025 Jun 18;12(6):250094. doi: 10.1098/rsos.250094. eCollection 2025 Jun.
3
A Rapid F0 CRISPR Screen in Zebrafish to Identify Regulator Genes of Neuronal Development in the Enteric Nervous System.
Neurogastroenterol Motil. 2025 May;37(5):e70009. doi: 10.1111/nmo.70009. Epub 2025 Apr 6.
4
Imaging analytical technique to assess gastrointestinal motility in vivo using zebrafish larvae with diabetes mellitus-like traits.
PLoS One. 2024 Dec 2;19(12):e0314515. doi: 10.1371/journal.pone.0314515. eCollection 2024.
5
The type VI secretion system induces intestinal macrophage redistribution and enhanced intestinal motility.
mBio. 2025 Jan 8;16(1):e0241924. doi: 10.1128/mbio.02419-24. Epub 2024 Nov 22.
7
Who's talking to whom: microbiome-enteric nervous system interactions in early life.
Am J Physiol Gastrointest Liver Physiol. 2023 Mar 1;324(3):G196-G206. doi: 10.1152/ajpgi.00166.2022. Epub 2023 Jan 10.
8
Zebrafish: an efficient vertebrate model for understanding role of gut microbiota.
Mol Med. 2022 Dec 23;28(1):161. doi: 10.1186/s10020-022-00579-1.
9
A New Transgenic Tool to Study the Ret Signaling Pathway in the Enteric Nervous System.
Int J Mol Sci. 2022 Dec 10;23(24):15667. doi: 10.3390/ijms232415667.
10
How to Heal the Gut's Brain: Regeneration of the Enteric Nervous System.
Int J Mol Sci. 2022 Apr 27;23(9):4799. doi: 10.3390/ijms23094799.

本文引用的文献

1
Gut feelings: Studying enteric nervous system development, function, and disease in the zebrafish model system.
Dev Dyn. 2018 Feb;247(2):268-278. doi: 10.1002/dvdy.24597. Epub 2017 Oct 23.
2
The enteric nervous system promotes intestinal health by constraining microbiota composition.
PLoS Biol. 2017 Feb 16;15(2):e2000689. doi: 10.1371/journal.pbio.2000689. eCollection 2017 Feb.
3
Modeling intestinal disorders using zebrafish.
Methods Cell Biol. 2017;138:241-270. doi: 10.1016/bs.mcb.2016.11.006. Epub 2017 Jan 7.
5
Host Gut Motility Promotes Competitive Exclusion within a Model Intestinal Microbiota.
PLoS Biol. 2016 Jul 26;14(7):e1002517. doi: 10.1371/journal.pbio.1002517. eCollection 2016 Jul.
6
Genetics of enteric neuropathies.
Dev Biol. 2016 Sep 15;417(2):198-208. doi: 10.1016/j.ydbio.2016.07.008. Epub 2016 Jul 15.
7
Zebrafish as a model for understanding enteric nervous system interactions in the developing intestinal tract.
Methods Cell Biol. 2016;134:139-64. doi: 10.1016/bs.mcb.2016.02.003. Epub 2016 Mar 9.
8
Insights into the mechanisms underlying colonic motor patterns.
J Physiol. 2016 Aug 1;594(15):4099-116. doi: 10.1113/JP271919. Epub 2016 Jun 9.
9
The zebrafish mutant lessen: an experimental model for congenital enteric neuropathies.
Neurogastroenterol Motil. 2016 Mar;28(3):345-57. doi: 10.1111/nmo.12732. Epub 2015 Dec 20.
10
Neuromechanical factors involved in the formation and propulsion of fecal pellets in the guinea-pig colon.
Neurogastroenterol Motil. 2015 Oct;27(10):1466-77. doi: 10.1111/nmo.12646. Epub 2015 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验