Suppr超能文献

根漏洞检测与特征优化:基于移动设备和区块链的医疗数据管理。

Root Exploit Detection and Features Optimization: Mobile Device and Blockchain Based Medical Data Management.

机构信息

Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia.

Department of Computer System and Technology, Faculty of Computer Science and Information Technology, University of Malaya, 50603, Kuala Lumpur, Malaysia.

出版信息

J Med Syst. 2018 May 4;42(6):112. doi: 10.1007/s10916-018-0966-x.

Abstract

The increasing demand for Android mobile devices and blockchain has motivated malware creators to develop mobile malware to compromise the blockchain. Although the blockchain is secure, attackers have managed to gain access into the blockchain as legal users, thereby comprising important and crucial information. Examples of mobile malware include root exploit, botnets, and Trojans and root exploit is one of the most dangerous malware. It compromises the operating system kernel in order to gain root privileges which are then used by attackers to bypass the security mechanisms, to gain complete control of the operating system, to install other possible types of malware to the devices, and finally, to steal victims' private keys linked to the blockchain. For the purpose of maximizing the security of the blockchain-based medical data management (BMDM), it is crucial to investigate the novel features and approaches contained in root exploit malware. This study proposes to use the bio-inspired method of practical swarm optimization (PSO) which automatically select the exclusive features that contain the novel android debug bridge (ADB). This study also adopts boosting (adaboost, realadaboost, logitboost, and multiboost) to enhance the machine learning prediction that detects unknown root exploit, and scrutinized three categories of features including (1) system command, (2) directory path and (3) code-based. The evaluation gathered from this study suggests a marked accuracy value of 93% with Logitboost in the simulation. Logitboost also helped to predicted all the root exploit samples in our developed system, the root exploit detection system (RODS).

摘要

移动设备和区块链对 Android 的需求不断增长,这促使恶意软件的开发者们开发移动恶意软件来攻击区块链。尽管区块链是安全的,但攻击者还是设法以合法用户的身份进入了区块链,从而危及了重要和关键的信息。移动恶意软件的例子包括 rootkit 攻击、僵尸网络和木马,而 rootkit 攻击是最危险的恶意软件之一。它会攻击操作系统内核,以获取 root 权限,然后攻击者会利用这些权限绕过安全机制,完全控制操作系统,在设备上安装其他可能类型的恶意软件,最后窃取与区块链相关的受害者的私钥。为了最大限度地提高基于区块链的医疗数据管理(BMDM)的安全性,研究 rootkit 恶意软件所包含的新功能和方法至关重要。本研究拟采用实用群体优化(PSO)的生物启发方法,自动选择包含新型 Android 调试桥(ADB)的独特特征。本研究还采用了提升(adaboost、realadaboost、logitboost 和 multiboost)来增强机器学习预测,以检测未知的 rootkit 攻击,并仔细研究了包括(1)系统命令、(2)目录路径和(3)基于代码的三个特征类别。研究结果表明,在模拟中 Logitboost 的准确率达到了 93%。Logitboost 还帮助预测了我们开发的系统(RODS)中所有的 rootkit 攻击样本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验