Suppr超能文献

GDF11 可诱导肾脏纤维化、肾小管上皮细胞-间充质转化以及肾脏功能障碍和衰竭。

GDF11 induces kidney fibrosis, renal cell epithelial-to-mesenchymal transition, and kidney dysfunction and failure.

机构信息

Department of Surgery, Indiana University School of Medicine, Indianapolis.

Department of Surgery, Indiana University School of Medicine, Indianapolis.

出版信息

Surgery. 2018 Aug;164(2):262-273. doi: 10.1016/j.surg.2018.03.008. Epub 2018 May 3.

Abstract

BACKGROUND

GDF11 modulates embryonic patterning and kidney organogenesis. Herein, we sought to define GDF11 function in the adult kidney and in renal diseases.

METHODS

In vitro renal cell lines, genetic, and murine in vivo renal injury models were examined.

RESULTS

Among tissues tested, Gdf11 was highest in normal adult mouse kidney. Expression was increased acutely after 5/6 nephrectomy, ischemia-reperfusion injury, kanamycin toxicity, or unilateral ureteric obstruction. Systemic, high-dose GDF11 administration in adult mice led to renal failure, with accompanying kidney atrophy, interstitial fibrosis, epithelial-to-mesenchymal transition of renal tubular cells, and eventually death. These effects were associated with phosphorylation of SMAD2 and could be blocked by follistatin. In contrast, Gdf11 heterozygous mice showed reduced renal Gdf11 expression, renal fibrosis, and expression of fibrosis-associated genes both at baseline and after unilateral ureteric obstruction compared with wild-type littermates. The kidney-specific consequences of GDF11 dose modulation are direct effects on kidney cells. GDF11 induced proliferation and activation of NRK49f renal fibroblasts and also promoted epithelial-to-mesenchymal transition of IMCD-3 tubular epithelial cells in a SMAD3-dependent manner.

CONCLUSION

Taken together, these data suggest that GDF11 and its downstream signals are critical in vivo mediators of renal injury. These effects are through direct actions of GDF11 on renal tubular cells and fibroblasts. Thus, regulation of GDF11 presents a therapeutic target for diseases involving renal fibrosis and impaired tubular function.

摘要

背景

GDF11 调节胚胎模式形成和肾脏器官发生。在此,我们试图确定 GDF11 在成年肾脏和肾脏疾病中的功能。

方法

研究了体外肾细胞系、遗传和小鼠体内肾损伤模型。

结果

在测试的组织中,正常成年小鼠肾脏中的 Gdf11 含量最高。在 5/6 肾切除术、缺血再灌注损伤、卡那霉素毒性或单侧输尿管梗阻后,表达量会急性增加。在成年小鼠中全身给予高剂量 GDF11 会导致肾衰竭,伴随肾脏萎缩、间质纤维化、肾小管细胞上皮-间充质转化,最终死亡。这些效应与 SMAD2 的磷酸化有关,可以被卵泡抑素阻断。相比之下,与野生型同窝仔相比,Gdf11 杂合子小鼠在基础水平和单侧输尿管梗阻后肾脏 Gdf11 表达、肾脏纤维化和纤维化相关基因表达均减少。GDF11 剂量调节对肾脏细胞的直接影响导致了肾脏的特异性后果。GDF11 诱导 NRK49f 肾成纤维细胞的增殖和激活,也以 SMAD3 依赖的方式促进 IMCD-3 肾小管上皮细胞的上皮-间充质转化。

结论

综上所述,这些数据表明 GDF11 及其下游信号是体内肾脏损伤的关键介质。这些效应是通过 GDF11 对肾小管细胞和成纤维细胞的直接作用产生的。因此,GDF11 的调节为涉及肾脏纤维化和肾小管功能受损的疾病提供了治疗靶点。

相似文献

1
GDF11 induces kidney fibrosis, renal cell epithelial-to-mesenchymal transition, and kidney dysfunction and failure.
Surgery. 2018 Aug;164(2):262-273. doi: 10.1016/j.surg.2018.03.008. Epub 2018 May 3.
2
GDF11 impairs liver regeneration in mice after partial hepatectomy.
Clin Sci (Lond). 2019 Oct 30;133(20):2069-2084. doi: 10.1042/CS20190441.
3
GDF11 improves tubular regeneration after acute kidney injury in elderly mice.
Sci Rep. 2016 Oct 5;6:34624. doi: 10.1038/srep34624.
4
GDF11 Inhibits Bone Formation by Activating Smad2/3 in Bone Marrow Mesenchymal Stem Cells.
Calcif Tissue Int. 2016 Nov;99(5):500-509. doi: 10.1007/s00223-016-0173-z. Epub 2016 Jul 9.
6
Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting.
Basic Res Cardiol. 2017 Jul;112(4):48. doi: 10.1007/s00395-017-0639-9. Epub 2017 Jun 24.
8
Growth differentiation factor 11 supports migration and sprouting of endothelial progenitor cells.
J Surg Res. 2015 Sep;198(1):50-6. doi: 10.1016/j.jss.2015.05.001. Epub 2015 May 7.
9
The function of growth/differentiation factor 11 (Gdf11) in rostrocaudal patterning of the developing spinal cord.
Development. 2006 Aug;133(15):2865-74. doi: 10.1242/dev.02478. Epub 2006 Jun 21.
10
MAD2B promotes tubular epithelial-to-mesenchymal transition and renal tubulointerstitial fibrosis via Skp2.
J Mol Med (Berl). 2016 Nov;94(11):1297-1307. doi: 10.1007/s00109-016-1448-6. Epub 2016 Aug 3.

引用本文的文献

1
gdf11 is required for pronephros/cloaca development through targeting TGF-β signaling.
Sci Rep. 2025 Mar 7;15(1):8052. doi: 10.1038/s41598-025-92571-y.
2
GDF-15 Attenuates the Epithelium-Mesenchymal Transition and Alleviates TGFβ2-Induced Lens Opacity.
Transl Vis Sci Technol. 2024 Jul 1;13(7):2. doi: 10.1167/tvst.13.7.2.
3
Deficiency of GDF-11 Accelerates TAC-Induced Heart Failure by Impairing Cardiac Angiogenesis.
JACC Basic Transl Sci. 2023 Feb 22;8(6):617-635. doi: 10.1016/j.jacbts.2022.11.004. eCollection 2023 Jun.
6
Exosomes derived from mesenchymal stem cells ameliorate renal fibrosis via delivery of miR-186-5p.
Hum Cell. 2022 Jan;35(1):83-97. doi: 10.1007/s13577-021-00617-w. Epub 2021 Sep 28.
7
Myostatin/Activin Receptor Ligands in Muscle and the Development Status of Attenuating Drugs.
Endocr Rev. 2022 Mar 9;43(2):329-365. doi: 10.1210/endrev/bnab030.
8
Follistatin Attenuates Myocardial Fibrosis in Diabetic Cardiomyopathy the TGF-β-Smad3 Pathway.
Front Pharmacol. 2021 Jul 27;12:683335. doi: 10.3389/fphar.2021.683335. eCollection 2021.
9
Similar sequences but dissimilar biological functions of GDF11 and myostatin.
Exp Mol Med. 2020 Oct;52(10):1673-1693. doi: 10.1038/s12276-020-00516-4. Epub 2020 Oct 19.
10
Candidate rejuvenating factor GDF11 and tissue fibrosis: friend or foe?
Geroscience. 2020 Dec;42(6):1475-1498. doi: 10.1007/s11357-020-00279-w. Epub 2020 Oct 6.

本文引用的文献

1
Erratum to: Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting.
Basic Res Cardiol. 2017 Sep;112(5):53. doi: 10.1007/s00395-017-0642-1.
2
Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting.
Basic Res Cardiol. 2017 Jul;112(4):48. doi: 10.1007/s00395-017-0639-9. Epub 2017 Jun 24.
3
Lack of evidence for GDF11 as a rejuvenator of aged skeletal muscle satellite cells.
Aging Cell. 2016 Jun;15(3):582-4. doi: 10.1111/acel.12475. Epub 2016 Mar 28.
4
Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation.
Circ Res. 2016 Apr 1;118(7):1125-41; discussion 1142. doi: 10.1161/CIRCRESAHA.116.308391.
6
Questions and Answers About Myostatin, GDF11, and the Aging Heart.
Circ Res. 2016 Jan 8;118(1):6-8. doi: 10.1161/CIRCRESAHA.115.307861.
7
Circulating Growth Differentiation Factor 11/8 Levels Decline With Age.
Circ Res. 2016 Jan 8;118(1):29-37. doi: 10.1161/CIRCRESAHA.115.307521. Epub 2015 Oct 21.
8
GDF11 does not rescue aging-related pathological hypertrophy.
Circ Res. 2015 Nov 6;117(11):926-32. doi: 10.1161/CIRCRESAHA.115.307527. Epub 2015 Sep 17.
9
Reduced Circulating GDF11 Is Unlikely Responsible for Age-Dependent Changes in Mouse Heart, Muscle, and Brain.
Endocrinology. 2015 Nov;156(11):3885-8. doi: 10.1210/en.2015-1628. Epub 2015 Sep 15.
10
GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration.
Cell Metab. 2015 Jul 7;22(1):164-74. doi: 10.1016/j.cmet.2015.05.010. Epub 2015 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验