Suppr超能文献

为 Mottronics 定制材料:原型莫特绝缘体的过量氧掺杂。

Tailoring Materials for Mottronics: Excess Oxygen Doping of a Prototypical Mott Insulator.

机构信息

Physikalisches Institut and Röntgen Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany.

Diamond Light Source Ltd., Didcot, Oxfordshire, OX11 0DE, UK.

出版信息

Adv Mater. 2018 Jun;30(25):e1706708. doi: 10.1002/adma.201706708. Epub 2018 May 7.

Abstract

The Mott transistor is a paradigm for a new class of electronic devices-often referred to by the term Mottronics-which are based on charge correlations between the electrons. Since correlation-induced insulating phases of most oxide compounds are usually very robust, new methods have to be developed to push such materials right to the boundary to the metallic phase in order to enable the metal-insulator transition to be switched by electric gating. Here, it is demonstrated that thin films of the prototypical Mott insulator LaTiO grown by pulsed laser deposition under oxygen atmosphere are readily tuned by excess oxygen doping across the line of the band-filling controlled Mott transition in the electronic phase diagram. The detected insulator to metal transition is characterized by a strong change in resistivity of several orders of magnitude. The use of suitable substrates and capping layers to inhibit oxygen diffusion facilitates full control of the oxygen content and renders the films stable against exposure to ambient conditions. These achievements represent a significant advancement in control and tuning of the electronic properties of LaTiO thin films making it a promising channel material in future Mottronic devices.

摘要

莫特晶体管是一类新型电子器件的范例,通常被称为 Mottronics,它们基于电子之间的电荷相关性。由于大多数氧化物化合物的关联诱导绝缘相通常非常稳定,因此必须开发新的方法将这些材料推向金属相的边界,以便通过电门控来实现金属-绝缘体转变。在这里,证明了在氧气气氛下通过脉冲激光沉积生长的原型莫特绝缘体 LaTiO 薄膜可以通过在电子相图中带填充控制莫特转变线上过量氧掺杂来轻松调节。检测到的绝缘到金属转变的特征是电阻率发生几个数量级的强烈变化。使用合适的衬底和覆盖层来抑制氧扩散有助于完全控制氧含量,并使薄膜在暴露于环境条件下保持稳定。这些成就代表了对 LaTiO 薄膜电子特性的控制和调谐的重大进展,使其成为未来 Mottronic 器件中有前途的沟道材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验